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Quantum Approximate Optimization Algorithm (QAOA)

QAOA is a variational algorithm for preparing quantum states using
low-depth quantum circuits [1]. It optimizes over a set of angles θ in order to
minimize some cost function, e.g. the energy 〈ψ(θ)|H|ψ(θ)〉, where

|ψ(θ)〉 = e−iθp,1H1...e−iθp,MHM...e−iθ1,1H1...e−iθ1,MHM |ψ0〉 , (1)

|ψ0〉 is some easily preparable initial state, {Hj}j∈{1,...,M} is some set of
Hamiltonians, and p is the number of steps.

QAOA is able to prepare non-trivial quantum states [2] e.g. the GHZ state.

Interaction distance

Given some density matrix ρ, we define the interaction distance of ρ [4] as

DF(ρ) := min
σ∈F
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where F is the manifold of Gaussian density matrices, which are of the form
σ = eH, with H quadratic. Interaction distance measures how far a density
matrix is from a Gaussian density matrix.

Figure 1: Interaction distance can be interpreted as a distance to the closest free fermion model
[3]. The ground states of free fermion models are always Gaussian.

This minimization can be restricted to the Gaussian states simultaneously
diagonalizable with ρ, parameterized by the free energies ε:

DF(ρ) = min
ε
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ρk is the entanglement spectrum of ρ in descending order; k also labels the

Fock basis such that the σk are in descending order, and n(k)
j is the

occupancy number of the jth site.

Ising model

We consider the non-integrable Ising model with PBC
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i σ

z
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In [2], it was argued that the ground states of the transverse field Ising model
(hx = 0) can be exactly prepared with p = N

2
, using H1 = −

∑N−1
i=0 σx

i ,

H2 = −
∑N−1

i=0 σz
i σ

z
i+1 mod N.
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Results

We want to quantify how efficient QAOA is in preparing the ground state of
(4) for hx, hz ∈ [0, 3].

• We use H ′1 = −
∑N−1

i=0 σz
i ,H

′
2 = H1,H ′3 = H2.

• We simulate the quantum evolution step classically using 1− f as the cost
function, where f = 〈ψGS|ψ(θ)〉2 and ψGS is the ground state of H.

• scipy.minimize.basinhopping was used to avoid local minima.
• We computed DF across the phase diagram of (4) and found good

correlation with 1− f (Figures 2 and 3).
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Figure 2: Ferromagnetic (left) and antiferromagnetic (right) Ising model.

Figure 3: Correlation between DF and 1− f in ferromagnetic (left) and antiferromagnetic
(right) Ising model, for N = 6 (top) and N = 8 (bottom) for the data in Figure 2.

Analysis

• We have found a correlation between DF and QAOA around p = N
2

in the
Ising model (4).
• This can be explained by the perturbatively small angles associated with

H ′1 (ask me about this!).
• We relate how hard it is to prepare a ground state with how free it is, as

measured by DF
• This correlation is also present in the three-spin Ising model.
• This is a hard minimization problem. The initial guess and the classical

simulation of the quantum evolution can be improved.
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