# Quantifying the efficiency of state preparation via quantum variational eigensolvers

Gabriel Matos<sup>1</sup>, Sonika Johri<sup>2</sup>, and Zlatko Papić<sup>1</sup>

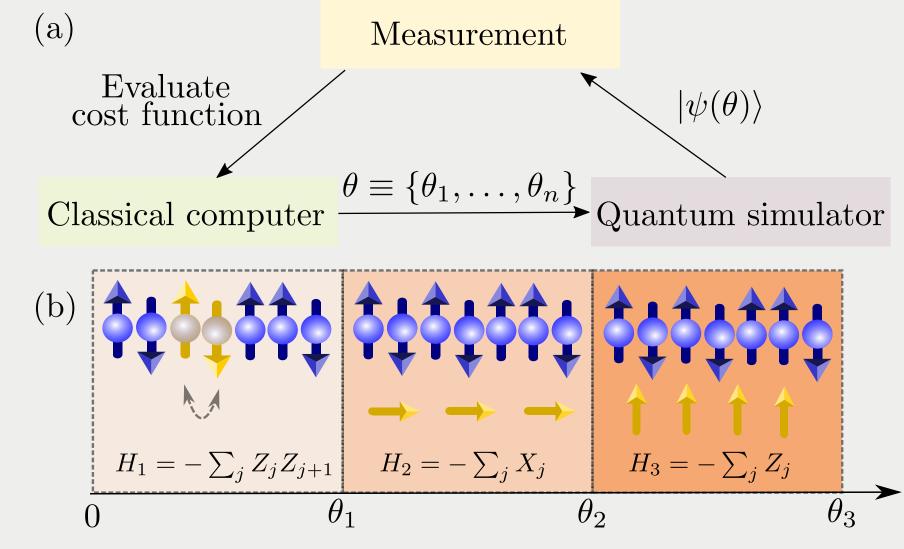
<sup>1</sup>School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom <sup>2</sup>IonQ Inc., College Park, MD 20742, USA

### Quantum Approximate Optimization Algorithm (QAOA)

QAOA is a variational algorithm for preparing quantum states using low-depth quantum circuits [1]. It optimizes over a set of angles  $\theta$  in order to minimize some cost function, e.g. the energy  $\langle \psi(\theta)|H|\psi(\theta)\rangle$ , where

$$|\psi(\theta)\rangle = e^{-i heta_{
ho,1}H_1}...e^{-i heta_{
ho,M}H_M}...e^{-i heta_{1,1}H_1}...e^{-i heta_{1,M}H_M}\,|\psi_0
angle\,, \qquad (1)$$

 $|\psi_0\rangle$  is some easily preparable initial state,  $\{H_j\}_{j\in\{1,...,M\}}$  is some set of Hamiltonians, and p is the number of steps.



QAOA is able to prepare non-trivial quantum states [2] e.g. the GHZ state.

#### **Interaction distance**

Given some density matrix  $\rho$ , we define the interaction distance of  $\rho$  [4] as

$$\mathcal{D}_{\mathcal{F}}(
ho) := \min_{\sigma \in \mathcal{F}} \frac{1}{2} \operatorname{Tr} \left( \sqrt{(
ho - \sigma)^2} \right),$$
 (2)

where  ${\cal F}$  is the manifold of Gaussian density matrices, which are of the form  $\sigma=e^H$ , with H quadratic. Interaction distance measures how far a density matrix is from a Gaussian density matrix.

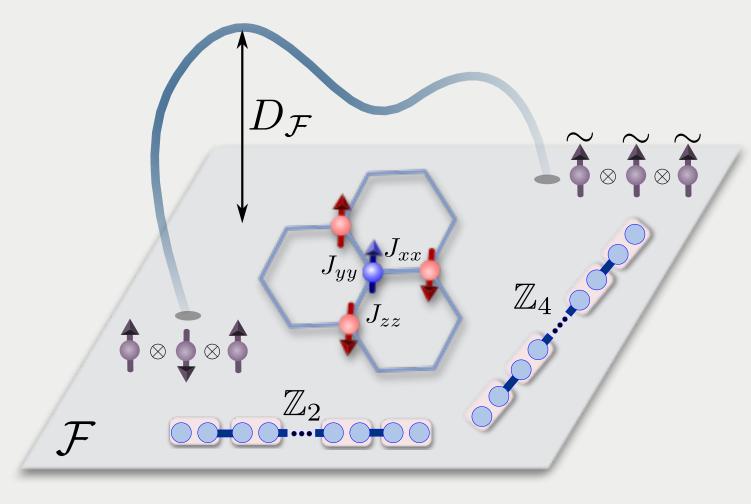


Figure 1: Interaction distance can be interpreted as a distance to the closest free fermion model [3]. The ground states of free fermion models are always Gaussian.

This minimization can be restricted to the Gaussian states simultaneously diagonalizable with  $\rho$ , parameterized by the free energies  $\epsilon$ :

$$\mathcal{D}_{\mathcal{F}}(\rho) = \min_{\epsilon} \frac{1}{2} \sum_{k} \left| e^{-\beta \rho_{k}} - \frac{e^{-\beta \sigma_{k}(\epsilon)}}{\sum_{j} e^{-\beta \sigma_{j}(\epsilon)}} \right|,$$

$$\sigma_{k}(\epsilon) = \sum_{j=0}^{N-1} \epsilon_{j} n_{j}^{(k)}, \qquad n_{j}^{(k)} \in \{0, 1\}$$
(3)

 $ho_k$  is the entanglement spectrum of ho in descending order; k also labels the Fock basis such that the  $\sigma_k$  are in descending order, and  $n_i^{(k)}$  is the occupancy number of the jth site.

### Ising model

We consider the non-integrable Ising model with PBC

$$H = -\sum_{i=0}^{N-1} \pm \sigma_i^z \sigma_{i+1 \bmod N}^z - h_z \sum_{i=0}^{N-1} \sigma_i^z - h_x \sum_{i=0}^{N-1} \sigma_i^x, \qquad (4)$$

In [2], it was argued that the ground states of the transverse field Ising model  $(h_x=0)$  can be exactly prepared with  $p=\frac{N}{2}$ , using  $H_1=-\sum_{i=0}^{N-1}\sigma_i^x$ ,  $H_2 = -\sum_{i=0}^{N-1} \sigma_i^z \sigma_{i+1 \mod N}^z$ 

# References

- E. Farhi, J. Goldstone, and S. Gutmann. arXiv:1411.4028 [quant-ph], Nov. 2014.
- [2] W. W. Ho and T. H. Hsieh. *SciPost Phys.*, 6(3):29, 2019.
- J. K. Pachos and Z. Papic. SciPost Phys. Lect. Notes, page 4, 2018.
- [4] C. J. Turner, K. Meichanetzidis, Z. Papić, and J. K. Pachos. *Nature Communications*, 8(1):14926, Apr. 2017.

#### Results

We want to quantify how efficient QAOA is in preparing the ground state of (4) for  $h_x, h_z \in [0, 3]$ .

- We use  $H_1' = -\sum_{i=0}^{N-1} \sigma_i^z$ ,  $H_2' = H_1$ ,  $H_3' = H_2$ .
- We simulate the quantum evolution step classically using 1-f as the cost function, where  $f = \langle \psi_{GS} | \psi(\theta) \rangle^2$  and  $\psi_{GS}$  is the ground state of H.
- scipy.minimize.basinhopping was used to avoid local minima.
- ullet We computed  $\mathcal{D}_{\mathcal{F}}$  across the phase diagram of (4) and found good correlation with 1 - f (Figures 2 and 3).

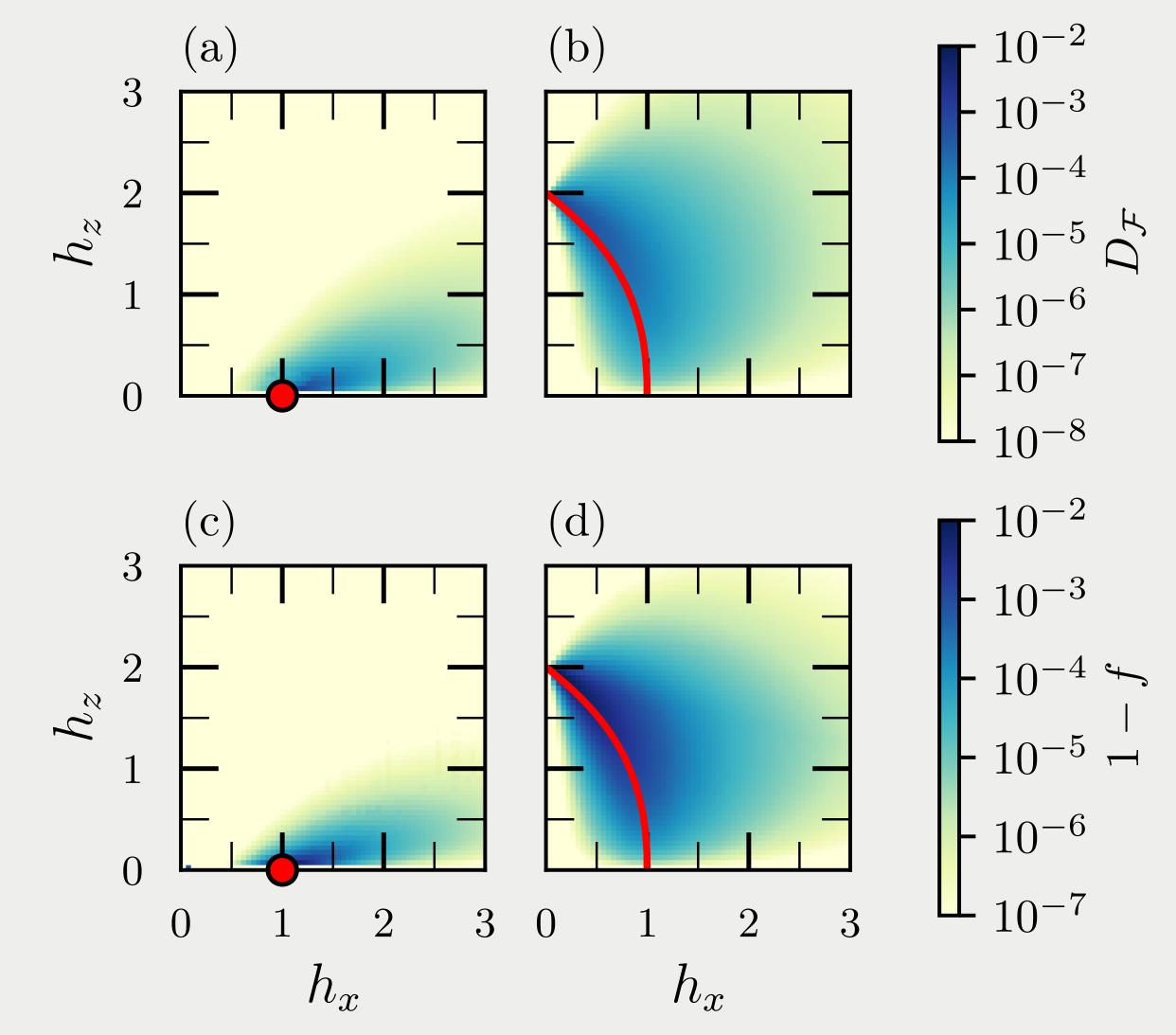


Figure 2: Ferromagnetic (left) and antiferromagnetic (right) Ising model.

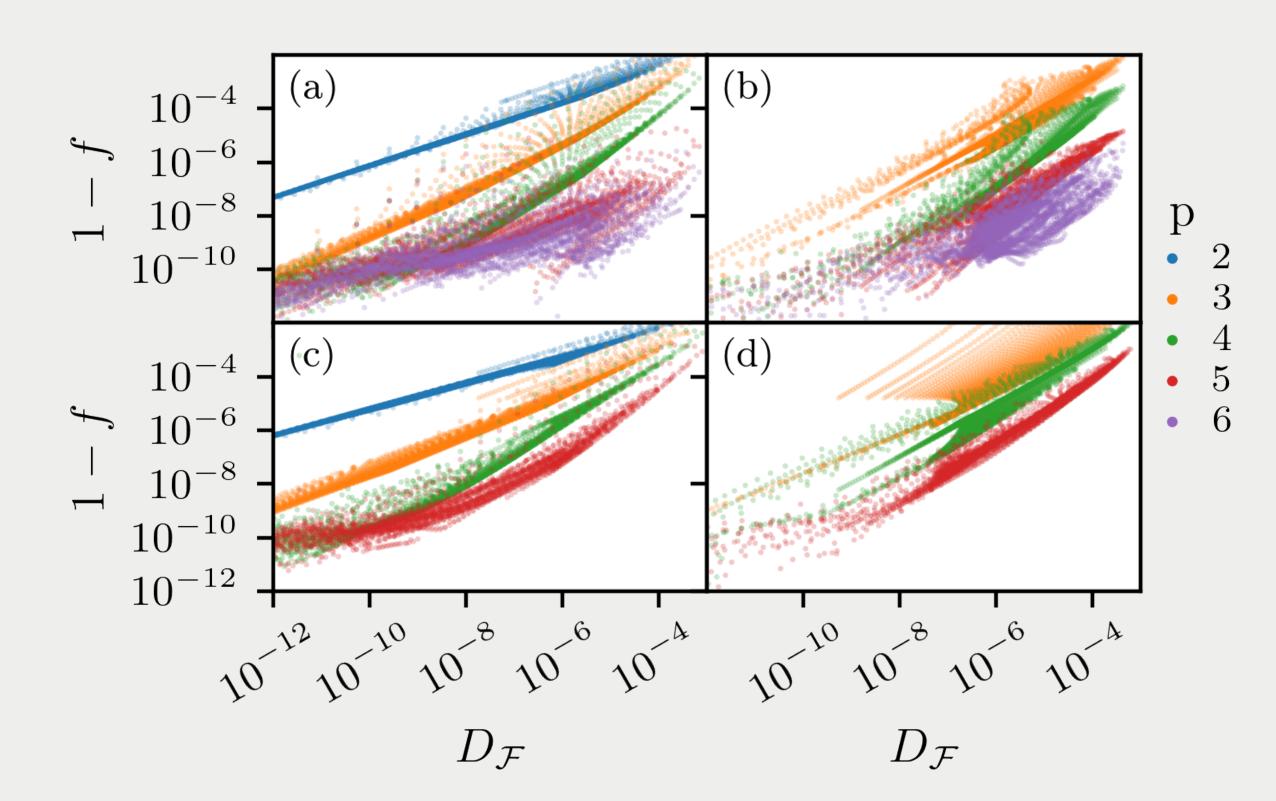


Figure 3: Correlation between  $\mathcal{D}_{\mathcal{F}}$  and 1-f in ferromagnetic (left) and antiferromagnetic (right) Ising model, for N = 6 (top) and N = 8 (bottom) for the data in Figure 2.

## **Analysis**

- ullet We have found a correlation between  ${\cal D}_{\cal F}$  and QAOA around  ${m p}=rac{N}{2}$  in the Ising model (4).
- This can be explained by the perturbatively small angles associated with  $H_1'$  (ask me about this!).
- We relate how hard it is to prepare a ground state with how free it is, as measured by  $\mathcal{D}_{\mathcal{F}}$
- This correlation is also present in the three-spin Ising model.
- This is a hard minimization problem. The initial guess and the classical simulation of the quantum evolution can be improved.

arXiv:2007.14338

