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Abstract: Randomness appears both in classical stochastic physics and in quantum mechanics. Here we address a computational scenario of shared randomness
processing where a quantum source manifest clear-cut precedence over the corresponding classical counterpart. To this aim we formulate a resource theory framework
for shared randomness processing. The advantage is operationally viable as it is manifested in the optimal payoff of a game involving two players. In distributing
shared randomness between distant parties, we also exhibit advantage of noisy quantum channel (with sub-optimal classical capacity) over a perfect classical channel.
Surprisingly, the advantage persists even when the channel has zero quantum capacity. The noisy channel examples facilitate noise-robust empirical setups to verify
the obtained quantum advantage.

Motivation

One of the central motives in quantum information
theory is to identify advantageous applications of
quantum rules in practical tasks. Quantum advant-
ages are, however, hard to find and even harder
to establish. For instance, exponential speed-up by
quantum computing for a range of problems, such
as factoring, sustains under the assumption (yet to
be proved) that no efficient classical algorithm is
possible for them.

Here we consider the task of processing shared ran-
domness which has already been established as an
important resource for a range of problems, starting
from Privacy amplification and Secure key gener-
ation, Simultaneous message passing model, Sim-
ulating nonlocal correlation, Random access codes,
Communication complexity to Bayesian game theory.
We established that quantum theory provably yields
resource reduction over classical stochastic physics
in shared randomness processing.

Principal Contributions

• Formulate a resource theory of Shared Random-
ness (SR)

• Establish quantum advantage in SR processing

• Show that Quantum Discord is necessary for the
desired advantage

• Demonstrate advantage of noisy quantum chan-
nel in SR distribution

Resource theory of SR

The framework of resource theory provides a novel
approach to quantify different physical resources.
Generic framework of any such theory identifies: (i)
class free states, (ii) class of free operations, and (iii)
resource conversion conditions (monotones).

Free states: A source of SR is specified by
a bipartite probability distribution P(X ,Y) ≡
{p(x, y) | x ∈ X , y ∈ Y}, where X and Y are the
parts of the shared variable accessible by spatially
separated parties Alice and Bob, respectively. Prob-
ability distributions of the product form P(X ,Y) =
P(X )Q(Y) are considered as free resources/states.

Fig.1: Two-2-coin state space C(2). A generic state is
described as C(2) ≡ (p(hh), p(ht), p(th), p(tt))ᵀ ≡
(x, y, z, 1 − x − y − z)ᵀ, isomorphic to the vector
(x, y, z)ᵀ ∈ R3 with x, y, z ≥ 0 & x + y + z ≤ 1.

Free operations: Local product operations LA⊗ LB

applied by Alice and Bob on their respective parts.
For classical systems such operations are most gen-
erally described by tensor product of local stochastic
matrices SA⊗SB, where SA maps Alice’s local prob-
ability vector P(X ) into a new probability vector
P′(X ′) and SB does the similar on Bob’s part. In

quantum case, free operations are product CPTP
maps ΛA⊗ΛB.

Resource monotones: A necessary condition
of state conversion from a distribution P(X ,Y)
to another Q(X ′,Y ′) is given by I(Q) ≤ I(P),
where I(P) is the classical mutual information
defined as I(P) := H(X ) + H(Y) − H(X ,Y),
with H(X ) being the Shannon entropy, H(X ) :=
−∑x∈X p(x) log2 p(x).

Fig.2: Free operations on two-2-coin states C(2) gen-
erates only a proper subset SC(2 7→ d) of two-d-coin
state space C(d). For instance, the transformation
C1/2(2) 7→ C1/6(6) is not allowed under free opera-
tions, where C1/6(6) := 1/6 ∑6

f=1 ff ∈ C(6).

Quantum advantage

•SC(2 7→ d): the subset of C(d) that can be obtained
from from C(2) under free operations

•SQ(2 7→ d): the subset of C(d) that can be ob-
tained from from Q(2) under free operations

Theorem 1: SC(2 7→ d) ⊂ SQ(2 7→ d), for d > 2.
Non-monopolizing social subsidy game.– The

game G(n) involves two employees Alice & Bob
working in an organization and n there are dif-
ferent restaurants r1, · · · , rn where the employees
have their beverages. The organization have a sub-
sidy rule which returns back the beverages bill
$R(n) = $ mini 6=j P(ij) to the employees, where
P(ij) is the probability of Alice visiting ri restaurant
and Bob rj restaurant [assuming per day expense $1
for each of the employees].
Since the reimbursement policy encourages total

trade to be distributed among all the restaurants
we call it ’non-monopolizing subsidy’ rule. The
employees are non-communicating and possess no
pre-shared randomness. However, they may be as-
sisted with some shared coin state (either classical or
quantum) along with the local strategies belonging
to the set of free operations. Following result bounds
their achievable payoff.

Theorem 2: 1
n2 ≤ R(n) ≤ 1

n(n−1).
Theorem 3: Given any coin state from C(2) the

payoff R(n) is always suboptimal for n > 2.
Theorem 4: The optimum payoff in R(n) can be

obtained from a coin state in Q(2), for n = 3, 4.
For n = 3, 4 the R(n) will be achieved with the

following SR:
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Quantum Protocol: Share the state Qsinglet(2) :=

|ψ−〉AB = 1√
2
(|01〉AB− |10〉AB) and perform same

TRINE/ SIC measurement.

Perfection should not be the enemy of
your achievement

Instead of the perfect two-2-quoin Qsinglet(2) if they
share imperfect Qp(2) := p |ψ−〉 〈ψ−|+ (1− p) I

2 ⊗
I
2,

the quantum advantage persists if p > 1/4 and
p > 1/5 for n = 3 and n = 4, respectively.
Theorem 5: Non-zero discord is necessary for

advantage over classical coins in G(n) game for
n = 3, 4.
SR distribution: Let Alice preparesQsinglet(2) and

sends one part to Bob through some noisy channel.
Qubit de-phasing channel Λz

β(ρ) := βρ + (1 −
β)σzρσz is advantageous over the noiseless classical
binary channel for β > 3/4 and β > 7/10 while
playing the games G(3) and G(4).

For de-polarizing channel ΛD
p (ρ) := pρ + (1 −

p)I/2 the advantage can be obtained for p > 1/4
and p > 1/5, respectively. Note that, ΛD

p is an en-
tanglement breaking channel whenever β ≤ 1/3.
Therefore a quantum channel can exhibit advantage
in SR distribution even when its quantum capacity is
zero. Classical capacity of qubit de-polarizing chan-
nel is given by χ(ΛD

p ) = 1− H
(

1+p
2

)
. Therefore,

the advantage is tangible even when the quantum
channel is largely imperfect.

Concluding remarks

• In SR distribution advantages of quantum chan-
nels have been shown. Such advantage is quite re-
markable when analyzed from the perspective of
the no-go results of Holevo and Frenkel-Weiner
that put limits on the classical information pro-
cessing through quantum systems

• The imperfect channel examples facilitate noise
robust empirical setup to verify the obtained
quantum advantage. The present work thus reck-
ons an important novel element in the list of
quantum preeminences.

• Our work also leaves a number of important
questions for future research. First of all, the
class of monotones, completely characterizing
the resource conversion is still missing

• It also serves as a stepping stone towards the rich
potentiality of accomplishing quantum advant-
age in randomness processing for higher dimen-
sional and multipartite scenarios.

“If it were necessary to give the briefest possible definition
of imperialism, we should have to say that imperialism is
the monopoly stage of capitalism.”—– Vladimir Lenin
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