Integrated entangling quantum logic gate in a scalable surface-electrode ion trap G. Zarantonello<sup>1,2</sup>, J. Morgner<sup>1,2</sup>, H. Hahn<sup>1,2</sup>, A. Bautista-Salvador<sup>1,2</sup>, M. Schulte<sup>1</sup>, K. Hammerer<sup>1</sup> and Christian Ospelkaus<sup>1,2</sup> <sup>1</sup>Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany <sup>2</sup>PTB, Bundesallee 100, 38116 Braunschweig, Germany



## Microwave near-field approach

### Classical Mølmer-Sørensen



#### Goal

• High-fidelity universal gate set by using microwave fields only

#### Requirements

• Drive carrier and sideband transitions

#### Advantages

- No spontaneous emission
- Less hardware required
- Potentially better scalability



### Experimental setup





coaxial resonator

1 trap

DN16 feedthrough







• Off-resonant carr. exc. : <0.1% • Microwave pulse shape : <0.1%





5 pin sub-d connector

## Ion trap designs

RF resonator



#### Multilayer design features[4,5]

- Substrate: Si/SiN
- Ion-electrode distance: 35 μm
- 10 DC electrodes
- 2 carrier electrodes

- Single layer design features
- Substrate: AIN
- Ion-electrode distance: 70 μm
- 10 DC electrodes
- 2 carrier electrodes

#### **Motivation**

Amplitude modulation open the possibility to change the classical circular trajectory in phase space

- Specific trajectories can be more resistant against residual spin-motion entanglement
- Provides insensitivity against motional mode fluctuations
- Dissipates less energy in the trap microstructures



#### Gate scheme comparison

- To demonstrate resilience we artificially inject noise in the pseudopotential which affects the radial modes • sin<sup>2</sup> modulation of 17th order vs 7 loop square pulse • square chosen because they dissipate the same energy
  - All measurements are SPAM corrected
  - Theoretical comparison of different schemes shows improvement of about two orders of magnitude

AM gate with 17th order [9]: F=99.7(1)%



 $\phi_{a}[^{\circ}$ 

150

| <ul> <li>Figure d</li> </ul> | of Merit: | > 0.3 |
|------------------------------|-----------|-------|
|------------------------------|-----------|-------|

- RF electrode length: 1.6 mm
- Carrier coupling: -28 dB

• Figure of Merit: 0.005 • RF electrode length: 1.45 mm • Carrier coupling: -19 dB



### References

[1] C. Ospelkaus *et al.*, Nature, 476, 181–184 (2011) [2] C. Ospelkaus *et al.*, PRL 101, 090502 (2008) [3] H. Hahn, et al., NPJ QI 5, 70 (2019) [4] A. Bautista-Salvador et al., NJP 21 (2019) 043011; Patent DE 10 2018 111 220 B3

[5] H. Hahn, et al., APB 125 (8), 154 (2019) [6] D. A. Hite *et al.*, PRL 109, 103001 (2012) [7] D.J. Wineland *et al.*, JRNIST 103, 259-328 (1998) [8] D. Kielpinski *et al.*, Nature, 417, 709-711 (2002) [9] G. Zarantonello *et al.*, PRL 123, 260503 (2019)

# Outlook

#### **Future plans**

• Characterization of the in situ Ar+ cleaning [6]

• Include dynamical decoupling schemes and perform randomized benchmarking.

• Develop next generation multilayer trap system [7,8]

