A Quantum model for rf-SQUIDs based metamaterials enabling 3WM and 4WM Travelling Wave Parametric Amplification

Luca Fasolo1,2, Angelo Greco1,2, and Emanuele Enrico1

1Department of Electronics and Telecommunications, Politecnico di Torino, Corso Castelbarco 39, 10129 Torino, Italy
2Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy

ABSTRACT

In superconducting quantum computing a qubit state can be inferred through the measurement of low-power microwave fields. In this context, the large bandwidth and ultralow-noise amplifier given by a Travelling Wave Josephson Parametric Amplifier (TWPA) plays an essential role. In our work we derive a quantum model for an rf-SQUID (rf-Superconducting Quantum Interference Device) based TWPA, enabling the amplification of the input signal through a three-wave or a four-wave mixing process. These two different working regimes can be properly selected by changing the external bias conditions, represented by a DC current or a magnetic flux. Within the model, we derive an analytical expression for the gain and the squeezing of a given input signal at the single-photon level. Furthermore, we investigate the time evolution inside the device of the probability distribution of the photonic population, in the cases of two-mode Fock and coherent input states.

THREE-WAVE and FOUR-WAVE MIXING

Three-wave mixing (3WM) and four-wave mixing (4WM) are energy-conservative intermodulation phenomena that occur in natural or artificial non-linear media.

![Schematic of 3WM and 4WM mixing](image)

The Hamiltonian of the system can be calculated as the sum of the energies stored in each component of the circuit presented in Fig. 1.

\[H(x) = \frac{1}{2a} \int (2\gamma_0 |\psi(t)|^2 - \cos(\Delta\Phi(t)/\psi_0) + \frac{\gamma}{2} \Delta\Phi(t)^2 + \frac{\gamma}{2} \Delta\Phi(t)^2)^2 + \frac{\gamma}{2} N \Delta\Phi(t)^2 \) dx

where \(\gamma_0 = \gamma_0/2 \) is the reduced magnetic flux quantum, with \(\gamma_0 \) the Planck constant and \(\omega \) the elementary charge.

Exploiting a mode decomposition of the electromagnetic field, the Hamiltonian can be expressed in the second quantization framework as [2]:

\[\hat{H} = \hbar \omega_0 + \sum_{\alpha} \sum_{\mathbf{k}} \hbar \omega_{\alpha \mathbf{k}} a_{\alpha \mathbf{k}}^\dagger a_{\alpha \mathbf{k}} + \sum_{\alpha} \sum_{\mathbf{k}} \hbar \omega_{\alpha \mathbf{k}} a_{\alpha \mathbf{k}}^\dagger a_{\alpha \mathbf{k}} + \frac{\hbar \alpha_0}{2} \sum_{\mathbf{k}} \left(a_{\mathbf{k}}^\dagger a_{\mathbf{k}} + a_{\mathbf{k}} a_{\mathbf{k}}^\dagger \right)

\]

KIEV CONCEPT: Due to the non-centrosymmetric nonlinearity of a flux-biased rf-SQUID, the amplifier can work both as a three-wave or a four-wave mixer. The two regimes can be selected by properly tuning the external bias conditions.

GAIN and SQUEEZING SPECTRUM

![Schematic of gain and squeezing spectrum](image)

BIMODAL FOCK and COHERENT STATES EVOLUTION

![Schematic of bimodal Fock and coherent states evolution](image)

BIBLIOGRAPHY

Luca Fasolo graduated in Physics (110/110 cum laude) in July 2019 at the University of Torino, with a dissertation entitled “Superconducting parametric amplifier for microwave photons quantum metrology”. From November 2019 he is a PhD student in Metrology at the Politecnico of Torino, with a scholarship financed by INRIM (Istituto Nazionale di Ricerca Metrologica). His research activities are focused on the fabrication, electrical characterization and theoretical modelling of superconducting devices operating in the microwave regime.

Contact: luca.fasolo@polito.it