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Decoherence is a fundamental obstacle to the implementation of large-scale and
low-noise quantum computing devices[1]. In the present work, we investigate the
role of the fidelity of finite-dimensional quantum systems in the context of their
robustness to decoherence. We suggest an approach for suppressing errors by
employing. We consider the realization of our approach for the basic decoherence
models, which include single-qubit depolarizing, dephasing, and amplitude
damping channels. We demonstrate that for the case of depolarization channels
there is a general relation between linear entropies of quantum states and
fidelities of the quantum state after the action of the depolarizing channel on a
particular subsystem of quantum states. We prove the general relation between
linear entropies of quantum states for depolarization channels and illustrate it for
qubit systems and we consider a generalization of the suggested approach for
qudit ensembles.

INTRODUCTION

ERROR SUPPRESSION SCHEME

SCHEMES FOR PROTECTING FROM DECOHERENCE

We have suggested the method for improving fidelity based on the class of
state-dependent operations protecting the system from decoherence. We
have shown that two schemes of this class, namely ‘individual-then-
collective’ and ‘collective-then-individual’ provide the same maximal
achievable levels of the fidelity. For basic channels we have seen that for
given decoherence strength the maximal fidelities in all the schemes except
‘both collective’ is expressed with the linear entropy of the qubit under
decoherence. In particular, we have obtained that the larger is the linear
entropy the lower is the fidelity. This feature provides an answer on the
question which qubit from the whole n-qubit system is the most vulnerable
and which qubit is the most robust in the sense of preserving the whole n-
qubit state after qubit decoherence. For the qubit case, the reduced state
with the lowest linear entropy is automatically the state with the lowest von
Neumann and min-entropies. This is, however, not the case for higher
dimensions.

CONCLUSION

APPLICATIONS FOR THE BASIC DECOHERENCE CHANNELS
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Error suppression scheme based on pre-processing and post-processing unitary
operations, which are designed specifically for the input state and decoherence
channel in order to maximize the fidelity of the output state.
Let the whole system be initialized in a pure state written in the following form:
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As the main target characteristic, we consider the fidelity regarding input and
output states, which is given by the following expression:

2 ≔ ⟨Ψ|$,…,'ρ$,…,'
(7) | ⟩Ψ $,…,'

DECOHERENCE CHANNELS

We use a pre-processing procedure for preparing a given
known quantum state of the system in a specific form. Next,
we use a post-processing operation, which follows the action
of a decoherence channel. These operations can be realized
as unitary operators, and their particular form can be
efficiently constructed on the basis of prior knowledge of the
state under the protection and decoherence channel.

‘Both individual’ scheme:
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| ⟩ψ= ⟨χ=|.

‘Individual-then-collective’ & ‘collective-then-individual’
scheme:

ADEF
EGH = | ⟩Ψ ⟨χ-| + … , ADEF ↔ 9DEF

K , 9:;<↔ A:;<
K .

‘Both collective’ scheme:
9DEF| ⟩Ψ LM = | ⟩Υ L ⊗ | ⟩Ξ M,

| ⟩ΥEGH Q ≔ argmin| ⟩X YZ:; [[ ⟩|Υ ⟨Υ|] ,
9DEF = ⟩|ΥEGH ⊗ | ⟩Ξ ⟨Ψ| + … , ADEF = | ⟩Ψ ⟨Θ| ⊗ ⟨Ξ| + … .

Basic single-qubit decoherence channels [2]
depolarizing channel:

[ ρ = 1 − a ρ + a
b
2
de ρ

dephasing channel:
[ ρ = 1 − a ρ + a(ρ--| ⟩0 g0| + ρ$$| ⟩0 ⟨0|)

damping channel:

[ ρ =)
7

h7ρh7 , h$ =
1 0
0 1 − a , hi =

0 a
0 0

.
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Figure 4. The results of employing the proposed protecting schemes. In (a) results for depolarizing channels, in (b) results

for dephasing channels, are in (c) results for amplitude damping channels are presented. In (a1), (b1), and (c1) the maximal

fidelities for all di↵erent strategies are shown. In (a2), (b2), and (c2) the advantage of using ‘individual-then-collective’ over

‘both individual’ is demonstrated. We note that ‘individual-then-collective’ and ‘collective-then-individual’ provides the same

results.
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Figure 5. Decomposition of the collective unitary operation W given by Eq. (56) into elementary operations.


