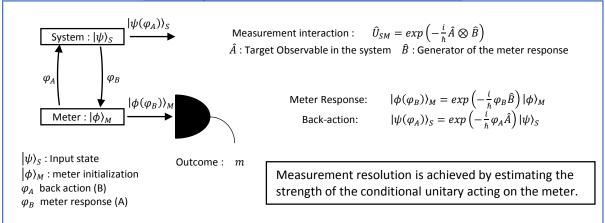
Meter sensitivity in quantum measurements

Tomonori Matsushita and Holger F. Hofmann, AdSE, Hiroshima University, Japan Young IQIS 2020, poster session (online)

Introduction

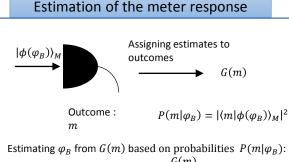
As the level of control over individual quantum systems improves, the precise nature of the relation between measurement resolution and back-action has became an important area of research [1-3]. We analyze the effects of a quantum interaction on a general meter system and show that the sensitivity of the meter depends on the uncertainty of its back-action.

Analysis of the measurement interaction



Result of the analysis:

The meter sensitivity F_M is upper bounded by the uncertainty of the cause of the back-action, ΔB^2 .



$$\varphi_B^{est.}(m) = \frac{\overline{d(m)}}{\frac{d\langle \hat{G} \rangle}{d\varphi_B}}$$

Sensitivity of the meter (inverse error of the estimate):

$$\frac{1}{\delta_{\varphi_B}^2} = \frac{\left(\frac{d\langle \hat{G} \rangle}{d\varphi_B}\right)^2}{\Delta G^2}$$

The sensititvity of the optimal estimate is given by the Fisher Information (Cramer-Rao bound):

$$F_M = \sum_m \frac{1}{P(m|\varphi_B)} \left(\frac{d}{d\varphi_A} P(m|\varphi_B) \right)^2$$

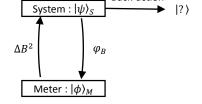
The Fisher information F_M determines the maximal sensitivity of the meter

Meter sensitivity and back- action

The quantum Cramer-Rao bound originates from the non-commutativity of estimator G and generator B,

$$\Delta B^{2} \Delta G^{2} \ge \frac{\hbar^{2}}{4} \left(\frac{d\langle \hat{G} \rangle}{d\varphi_{B}} \right)^{2}$$

$$F_{M} \le \frac{4}{\hbar^{2}} \Delta B^{2}$$
Back-action



The meter sensitivity F_M requires an uncertainty of ΔB^2 in the back-action!

- M. Ozawa, Phys. Rev. A 67, 042105 (2003). 1.
- 2. P. Busch, P. Lahti, and R. F. Werner, Rev. Mod. Phys. 86, 1261 (2014).
- 3. K. Patekar and H. F. Hofmann, New J. Phys. 21, 103006 (2019).

