

HILBERT-SCHMIDT SPEED

Consider the family of distance measures

$$[d_{\alpha}(p,q)]^{\alpha} = \frac{1}{2} \sum_{x} |p_{x}^{1/\alpha} - q_{x}^{1/\alpha}|^{\alpha} \quad (1$$

 $\alpha \geq 1, p, q$ are probability distributions. The classical statistical speed is given by

$$s_{\alpha}[p(\varphi_0)] = \frac{d}{d\varphi} d_{\alpha}(p(\varphi + \varphi_0), p(\varphi_0))$$
 (2)

Considering now a given pair of quantum states p and

 σ , one can extend these classical notions to the quantum case by taking p_{χ} $= Tr\{E_x\rho\}, and q_x = Tr\{E_x\sigma\}$ as the measurement probabilities associated with the positive-operator valued measure (POVM) defined by the set of E_x $\geq 0 [1].$

Extending S to the quantum case, one then obtains the quantum statistical speed as [2]

$$S_{\alpha}[\rho(\varphi)] = max_{\{E_x\}}S_{\alpha}[\rho(\varphi)] = \left(\frac{1}{2} Tr \left|\frac{d\rho}{d\varphi}\right|^{\alpha}\right)^{1/\alpha}$$
(3)

In the special case when $\alpha = 2$, the quantum statistical speed is given by the Hilbert-Schmidt speed (HSS) [2]

$$HSS(\rho_{\varphi}) = \sqrt{Tr[\left(\frac{d\rho_{\varphi}}{d\varphi}\right)^{2}]} \qquad (4)$$

It does not require the diagonalization of $\frac{a\rho_{\varphi}}{d\phi}$.

NON-MARKOVIANITY WITNESS BASED ON HSS Here we aim at exploiting a convenient quantum statistical speed [2] as a figure of merit of the non-Markovian character of quantum evolutions, which avoids diagonalization of the system density matrix. The initial state for a quantum system with n dimensional Hilbert space is

$$|\psi_{0>} = \frac{1}{\sqrt{n}} \left(e^{i\varphi} |\psi_{1>+} \dots + |\psi_{n>} \right)$$
 (5)

 φ : unknown phase shift

 $\{|\psi_{i>, i=1,...,n}\}$: complete and orthonormal basis for H [3] the HSS-based witness of non-Markovianity as

$$\chi(t) := \frac{dHSS(\rho_{\varphi}(t))}{dt} > 0 \quad (6)$$

CONCLUSION

*We introduce a witness for characterizing the non-Markovianity of quantum evolutions through HSS. *the proposed witness is as efficient as BLP witness in detecting the non-Markovianity. *Our study supplies a useful alternative tool to detect non-Markovianity based on the concept of quantum statistical speed detecting system-environment backflows of information. *the HSS-based witness does not require diagonalization of the reduced system density matrix. *faithful non-Markovianity witness for all the quantum system with dim n=2,3.

Witnessing non-Markovian effects of quantum processes through Hilbert-Schmidt speed

Hossein Rangani Jahromi¹, Kobra Mahdavipour^{2,3}, Mahshid Khazaei Shadfar^{2,3}, and Rosario Lo Franco⁴

1Physics Department, Faculty of Sciences, Jahrom University, P.B. 74135111, Jahrom, Iran 2Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Edificio 9, 90128 Palermo, Italy 3INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada 4Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo, Italy

ABSTRACT

diagonalization of the evolved density matrix. The proposed witness being sensitive to system-environment information backflows, in agreement with the BLP witness.

were ho_{arphi} (t) denotes the evolved state of the system. We show that the

proposed HSS-based non-Markovianity witness detects memory effects, in agreement with the well-established trace-distance-based witness, being sensitive to system-environment information backflows. The non-Markovianity effect of the system dynamics can be identified through another well-known perspective proposed by Breuer, Laine, and Piilo (BLP), namely, the distinguishability of two evolving quantum states of the same system[4]. This distinguishability is quantified by the trace distance, a commonly useful witness for two arbitrary states ρ_1 , ρ_2 is defined as $D(\rho_1, \rho_2) = \frac{1}{2} Tr |\rho_1|$

It's nonmonotonicity (σ >0) as a witness of non-Markovianity due to systemenvironment backflows of information.

Examples

We used the HSS witness for a single qubit system which is subject to phase covariant noise [5] and Pauli channel [6]. As a result we found the HSS-based witness is sensitive to system-environment information backflows, in perfect agreement with the BLP measure. Here we describe explicitly the time behavior of χ(t) for Two-qubit system and V-type three-level open quantum system.

$|\psi_0>=rac{1}{2}\left(e^{iarphi}|11>+|10>+|01>+|00> ight)$ $\rho_{11}(t)p(t)$

$$\rho_s(t) = \begin{pmatrix} \rho_{11}(t) \rho(t) \\ \rho_{01}(t) \sqrt{p(t)} \end{pmatrix}$$

where $P = P(t) \in [0, 1]$ is the coherence characteristic function [7].

$A) \chi(t) :=$	$dHSS(\rho_{\varphi}(t))$	dHS	$dHSS(\rho_{\varphi}(t))$	
	dt		dp	dt
B) $\sigma(t)$: =	$\frac{dD(\rho_1,\rho_2)}{dt} =$	${dD\over dp}{dp\over dt}$	$> 0 \Rightarrow$	$\frac{d}{d}$
We hence o	btain $\chi(t)$ >	0 ⇔σ	r(t) > 0.	[3

*As a prospect, these results stimulate the investigation for systems of higher dimension to assess the extent of validity.

Non-Markovian effects can speed up the dynamics of quantum systems. We introduce a witness for characterizing the non-Markovianity through the Hilbert-Schmidt speed (HSS). This witness has the advantage of not requiring

 $-\rho_2$, that is contractive under CPTP maps. The BLP witness is given by

 $\sigma(t) := \frac{dD(\rho_1, \rho_2)}{dt} \qquad (7)$

1- Two-qubit system:

Qubits A, B independently Interact with a leaky cavity with a Lorentzian spectral density for the cavity modes, in zero temperature.

The initial sate for the system is:

The evolved reduced density matrix is:

 $ho_{10}(t)\sqrt{p(t)}$ (9) $1 - \rho_{11}(t)p(t) /$

$$\frac{dp}{dt} > 0 \Rightarrow \frac{dp}{dt} > 0$$
 (10)
 $\frac{p}{dt} > 0$
31

[1] X. Wang and S. G. Schirmer, Phys. Rev. A 79, 052326 (2009). [2] M. Gessner and A. Smerzi, Phys. Rev. A 97, 022109 (2018). [3]H. Rangani Jahromi, K. Mahdavipour, M. Khazaei Shadfar, and R. Lo Franco, Phys. Rev. A 102, 022221. [4] H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009). [5] J. Teittinen, H. Lyyra, B. Sokolov, and S. Maniscalco, New J. Phys. 20, 073012 (2018). [6] D. Chruscinski and F. A. Wudarski, Phys. Lett. A 377, 1425 (2013). [7] B. Bellomo, R. Lo Franco, and G. Compagno, Phys. Rev. Lett. 99, 160502 (2007). [8] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).

Fig 1. Dynamics of HSS (blue solid line), D (red dot-dashed line), and coherence characteristic function P(t) as a function of the $\gamma_0 t$ for the two-qubit system in the strongcoupling regime, with $\lambda = 1.25\gamma_0$

2- V-type three-level open quantum system a V-type qutrit interacting with a dissipative reservoir [8], the *initial state is:*

$$|\psi_0> = rac{1}{\sqrt{3}} (e^{i\varphi}|\widetilde{2}> + |\widetilde{1}> + |\widetilde{0}>)$$
 (11)

The evolved reduced density matrix is:

$$\rho(t) = \sum_{i=1}^{3} \kappa_{i} \rho(0) \kappa_{i}^{+} \quad with \quad \kappa_{1} = \begin{pmatrix} G_{+}(t) & 0 & 0 \\ 0 & G_{-}(t) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\kappa_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sqrt{1 - |G_{+}(t)|^{2}} & 0 & 0 \end{pmatrix}, \kappa_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \sqrt{1 - |G_{-}(t)|^{2}} & 0 \end{pmatrix}$$

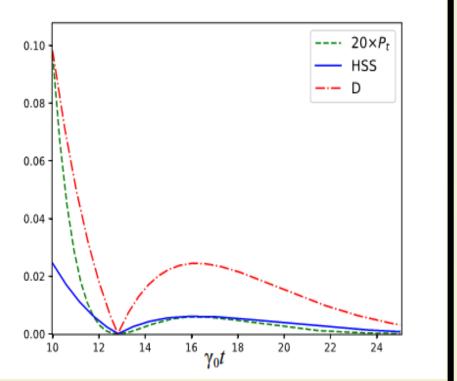
$$\rho(t) = \sum_{i=1}^{3} \kappa_i \rho(0) \kappa_i^+ \quad \text{with} \quad \kappa_1 = \begin{pmatrix} G_+(t) & 0 & 0 \\ 0 & G_-(t) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\kappa_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sqrt{1 - |G_+(t)|^2} & 0 & 0 \end{pmatrix}, \\ \kappa_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \sqrt{1 - |G_-(t)|^2} & 0 \\ 0 & \sqrt{1 - |G_-(t)|^2} & 0 \end{pmatrix}$$

$$G_{\pm}(t) = e^{-\lambda t/2} \left[\cosh\left(\frac{d_{\pm}t}{2}\right) + \frac{\lambda}{d_{\pm}} \sinh\left(\frac{d_{\pm}t}{2}\right) \right]$$
(12)

Where $d_{\pm} = \left[\lambda^2 - 2\lambda\gamma(1\pm|\theta|)\right]^{1/2}$, λ is the spectral width of the reservoir, γ is the relaxation rate of the two upper levels to the ground state, and ϑ depends on the relative angle between two dipole moment elements associated with the transitions $|2\rangle \rightarrow |0\rangle$ and $|1\rangle$ The HSS and BLP witnesses are given by [3]:

 $HSS(\rho_{\varphi}($

Fig 2. Dynamics of the HSS (blue solid line) and trace distance D (red dashed line) as a function of the γ t for the V-type three-level atom, with $\lambda = 5 \times 10^{-3} \gamma$



$$(t)) = \frac{1}{3} |G_+(t)| \sqrt{|G_-(t)|^2 + 1}$$
 (13)

$$D = |G_+(t)|$$

