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Non-Markovian effects can speed up the dynamics of quantum systems. We introduce a witness for characterizing the non-Markovianity through the Hilbert-Schmidt speed (HSS). This witness has the advantage of not requiring

diagonalization of the evolved density matrix. The proposed witness being sensitive to system-environment information backflows, in agreement with the BLP witness.

HILBERT-SCHMIDT SPEED
Consider the family of distance measures
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a = 1,p, q are probability distributions.
The classical statistical speed is given by

SalP(@o)] = &da(p(rp + @0),P(@o)) (2

Considering now a given pair of quantum states p and

o, one can extend these classical notions to the quantum case by taking p .,
=Tr{E,.p}, and q, = Tr{E,o} as the measurement probabilities associated
with the positive-operator valued measure (POVM) defined by the set of E ,

>0 [1].
Extending S to the quantum case, one then obtains the quantum statistical
speed as [2]
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In the special case when a = 2, the quantum statistical speed is given by the
Hilbert-Schmidt speed (HSS) [2]
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It does not require the diagonalization of dL(;”.

NON-MARKOVIANITY WITNESS BASED ON HSS

Here we aim at exploiting a convenient quantum statistical speed [2] as a
figure of merit of the non-Markovian character of quantum evolutions, which
avoids diagonalization of the system density matrix. The initial state for a
quantum system with n dimensional Hilbert space is

Yo = \/iﬁ (ei(p P15yt h/}n>) (5)

@ :unknown phase shift
UWis, i=1....n} : complete and orthonormal basis for H [3]

the HSS-based witness of non-Markovianity as

dHSS(py (D)) _
dt

x(@): = 0 (6)

CONCLUSION

*We introduce a witness for characterizing the non-Markovianity of quantum evolutions through HSS.
*the proposed witness is as efficient as BLP witness in detecting the non-Markovianity.
*Our study supplies a useful alternative tool to detect non-Markovianity based on the concept of quantum statistical

speed detecting system-environment backflows of information.

*the HSS-based witness does not require diagonalization of the reduced system density matrix.

*faithful non-Markovianity witness for all the quantum system with dim n=2,3.

*As a prospect, these results stimulate the investigation for systems of higher dimension to assess the extent of validity.

were p, (t ) denotes the evolved state of the system. We show that the

proposed HSS-based non-Markovianity witness detects memory effects, in
agreement with the well-established trace-distance-based witness, being sensitive
to system-environment information backflows.

The non-Markovianity effect of the system dynamics can be identified through
another well-known perspective proposed by Breuer, Laine, and Piilo (BLP),
namely, the distinguishability of two evolving quantum states of the same
system[4]. This distinguishability is quantified by the trace distance, a commonly

useful witness for two arbitrary states pq, p, is defined as D(p4, p;) = % Tr|p,

— p-|, that is contractive under CPTP maps. The BLP witness is given by
dD(p1,p2)
o(t):= —_ = (7
It’s nonmonotonicity (6>0 ) as a witness of non-Markovianity due to system-
environment backflows of information.

Examples

We used the HSS witness for a single qubit system which is subject to phase
covariant noise [5] and Pauli channel [6]. As a result we found the HSS-based
witness is sensitive to system-environment information backflows, in perfect
agreement with the BLP measure. Here we describe explicitly the time behavior
of x(t ) for Two-qubit system and V-type three-level open quantum system.

1- Two-qubit system:

Qubits A, B independently Interact with a leaky cavity with a Lorentzian spectral
density for the cavity modes, in zero temperature.

The initial sate for the system is:
1 .
[P > = > (e'?|11 > 4+ |10 > +|01 > +|00 >) (8)
The evolved reduced density matrix is:

o.(6) = ( PP P1o(OVP(D) ) ()
T \Pu®VP®) 1-pu®p®

where P = P(t ) €[0, 1] is the coherence characteristic function [7].

dHSS(p,(t))  dHSS(p,(t)) d d

A) x(t): = e = dp"’ d’; >0= d—’Z> 0 (10
dD , dD d

B) o (t): = (’;”2)_ d—pd—’: S0 259

We hence obtain y(t) >0 <> o(t) > 0. [3]

Fig 1. Dynamics of HSS (blue solid
line), D (red dot-dashed line),
and coherence characteristic function
P(t) as a function of the yyt for the
two-qubit system in the strong-
coupling regime, with A = 1.25y

2- V-type three-level open quantum system

a V-type qutrit interacting with a dissipative reservoir [8], the
initial state is:

Py > = % €®)1Z>+|1>+[0>) (11)

The evolved reduced density matrix is:

G.(t) 0 O
p() =X, kip(O)k{ with Ky =| 0 G_(t) O
0 0 1
0 0 O 0 0 0
K, = 0 0 0| g,=(0 0 0
V1-16,@®)* 0 0 0 J1-|6_(DI%Z 0

G, (t) — ¢ /2| cosh (E>+isinh (E> (12)
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Where d . = [/12 —2Ay(1 + IHD]l/ A is the spectral width of the
reservoir, y is the relaxation rate of the two upper levels to the
ground state, and O depends on the relative angle between two
dipole moment elements associated with the transitions

[2> = |0 >and [1 > [0>.
The HSS and BLP witnesses are given by [3]:

HSS(py(D) = 316, (OWIG_(OF +1  (13)

D = |G, (D)

Fig 2. Dynamics of the HSS (blue solid
line) and trace distance D (red
dashed line) as a function of the y t
for the V-type three-level atom, with
A=5x103y
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