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From behaviours to random

variables



“We label all measurements contextually: this means that a

property q is represented by different random variables RC
q

depending on the context C .”1

System

1[1] J. V. Kujala, E. N. Dzhafarov, and J.-A. Larsson, “Necessary and

sufficient conditions for an extended noncontextuality in abroad class of

quantum mechanical systems,”Phys. Rev. Lett.,vol. 115, p. 150401, Oct 2015
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• Non-degeneracy (consistent connectedness) defines a polytope

• We can relax the non-disturbance condition as a physical

requirement
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Thank you



Appendix



A collection of classical systems

For a context C we can associate a probability space (ΩC ,ΣC , µC )

where

xC : ΩC → O (1)

pC (s) = µC (
⋂
x∈C

x−1C (sx)) (2)

pCx (o) = µC (x−1C (o)) (3)





Classical behaviours

p in (X , C,O) is classical iff exists:

(a) a measurable space (Ω,Σ)

(b) a function π : X → MF (Ω,O)

(c) A probability measure µ in (Ω,Σ)

satisfying

• For any C ∈ C and any s ∈ OC ,

pC (s) = µ(
⋂
x∈C

π(x)−1(sx))



Classical behaviour

p is classical iff exists a distribution p : OX → [0, 1] satisfying, for

each context C

pC = pC



Quantum behaviours

p in (X , C,O) is a quantum behaviour iff exists

(a) A Hilbert space H

(b) A function θ : X → B(H)R

(c) A density operator ρ ∈ B(H)

satisfying

• For any C ∈ C,

[θ(x), θ(y)] = 0 ∀x , y ∈ C

• For any C ∈ C and s ∈ OC

pC (s) = Tr(ρ
∏
x∈C

P
(x)
ss )
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Quantum behaviours

• The joint spectrum of A1, ...,An ∈ B(H)R is

ΩC ≡ σ(A) ≡ {(λ1, ..., λn) ∈ σ(A1)×...×σ(An);
n∏

i=1

PAi
λi
6= 0}.

• Âi : σ(A)→ σ(Ai ) is the projection

σ(A) 3 (λ1, ..., λn) 7→ λi ∈ σ(Ai ).

• Consequently

(λ1, ..., λn) =
n⋂

i=1

Âi
−1

(λi )



Quantum behaviours

• A state ρ defines a probability measure µρA in σ(A) by means

of the Born rule:

µρA(
n⋂

i=1

Âi
−1

(λi )) = µρA((λ1, ..., λn))
.

= Tr(ρ
n∏

i=1

PAi
λi

)

• We also have

µρA(Âi
−1

(λ)) = Tr(ρPAi
λ )



Quantum behaviours

(σ(A),P(σ(A)), µρA) “satisfies”

xC : ΩC → O (4)

pC (s) = µC (
⋂
x∈C

x−1C (sx)) (5)

pCx (o) = µC (x−1C (o)) (6)
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• A behaviour defines a system
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