Contextuality-by-default for behaviours in compatibility scenarios

Alisson Tezzin, Rafael Wagner, Barbara Amaral October 2, 2020

Compatibility-hypergraph approach

to contextuality

A compatibility scenario is a triple $\mathcal{S} \equiv (\mathcal{X}, \mathcal{C}, \textit{O})$ where

A compatibility scenario is a triple $S \equiv (\mathcal{X}, \mathcal{C}, O)$ where

ullet $\mathcal X$ is a finite set (set of measurements)

A compatibility scenario is a triple $\mathcal{S} \equiv (\mathcal{X}, \mathcal{C}, \mathcal{O})$ where

- \mathcal{X} is a finite set (set of measurements)
- ullet C is a collection of contexts

A compatibility scenario is a triple $S \equiv (\mathcal{X}, \mathcal{C}, O)$ where

- \mathcal{X} is a finite set (set of measurements)
- ullet C is a collection of contexts
- O is a finite set (set of outcomes)

Behaviours

Behaviours

ullet O^C denotes the set of all functions $C \to O$

Behaviours

- O^C denotes the set of all functions $C \to O$
- A **behaviour** p for a scenario $(\mathcal{X}, \mathcal{C}, O)$ is a function which associates, to each context C, a probability distribution p^C over O^C

"We label all measurements contextually: this means that a property q is represented by different random variables R_q^C depending on the context C." ¹

¹[1] J. V. Kujala, E. N. Dzhafarov, and J.-A. Larsson, "Necessary and sufficient conditions for an extended noncontextuality in abroad class of quantum mechanical systems," Phys. Rev. Lett., vol. 115, p. 150401, Oct 2015

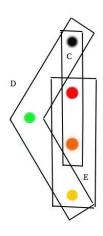
"We label all measurements contextually: this means that a property q is represented by different random variables R_q^C depending on the context C." ¹

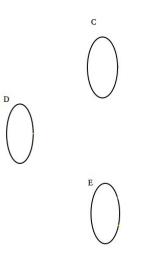
System

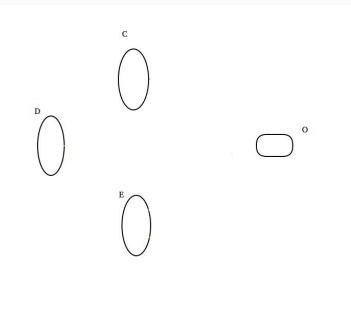
¹[1] J. V. Kujala, E. N. Dzhafarov, and J.-A. Larsson, "Necessary and sufficient conditions for an extended noncontextuality in abroad class of quantum mechanical systems," Phys. Rev. Lett.,vol. 115, p. 150401, Oct 2015

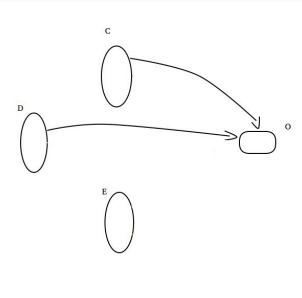
"Scenario + behaviour ⇒ system"?

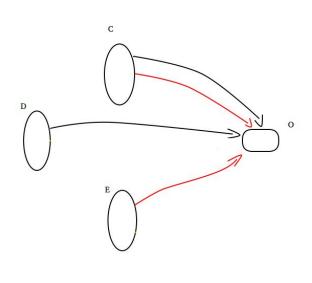
- "Scenario + behaviour \Rightarrow system"?
- We do that using marginal distributions

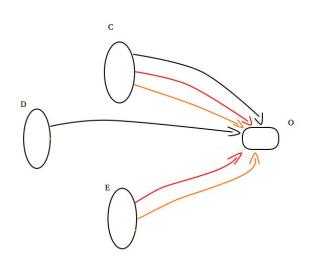


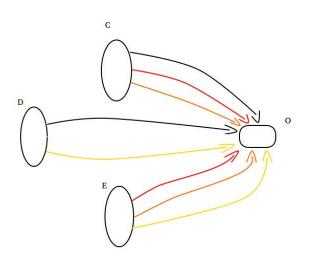


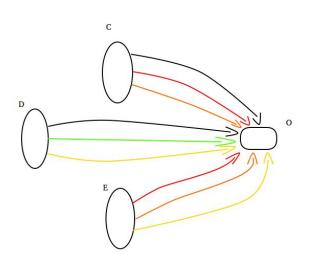












System

Behaviour

System

Behaviour

consistent connected

System

Behaviour

consistent connected

non-degenerate

System

Behaviour

consistent connected

non-degenerate

maximally non-contextual description

System

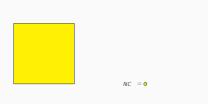
consistent connected

maximally non-contextual description

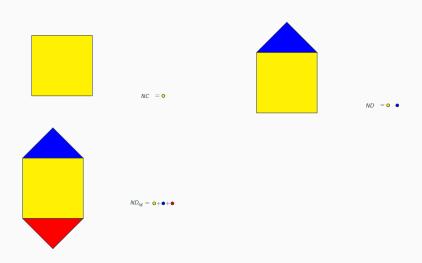
Behaviour

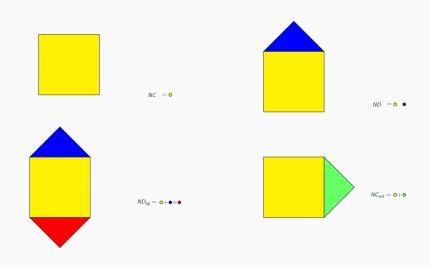
non-degenerate

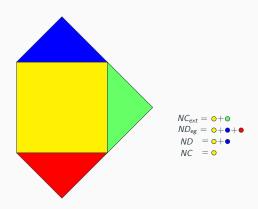
non-contextual in the extended sense



ND - 0







 The idea behind contextuality-by-default is implicit in the compatibility-hypergraph approach to contextuality

Results and conclusions

- The idea behind contextuality-by-default is implicit in the compatibility-hypergraph approach to contextuality
- Non-degeneracy (consistent connectedness) defines a polytope

Results and conclusions

- The idea behind contextuality-by-default is implicit in the compatibility-hypergraph approach to contextuality
- Non-degeneracy (consistent connectedness) defines a polytope
- We can relax the non-disturbance condition as a physical requirement

Appendix

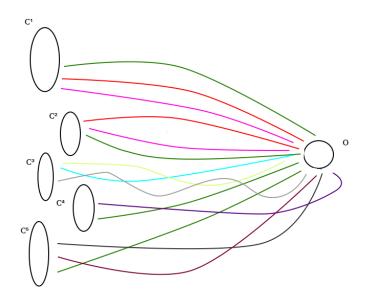
A collection of classical systems

For a context C we can associate a probability space $(\Omega^C, \Sigma^C, \mu^C)$ where

$$x_C: \Omega^C \to O$$
 (1)

$$p^{C}(s) = \mu^{C}(\bigcap_{x \in C} x_{C}^{-1}(s_{x}))$$
 (2)

$$p_x^C(o) = \mu^C(x_C^{-1}(o))$$
 (3)



Classical behaviours

p in $(\mathcal{X}, \mathcal{C}, O)$ is classical iff exists:

- (a) a measurable space (Ω, Σ)
- (b) a function $\pi: \mathcal{X} \to MF(\Omega, O)$
- (c) A probability measure μ in (Ω, Σ)

satisfying

ullet For any $C\in\mathcal{C}$ and any $s\in\mathcal{O}^{\mathcal{C}}$,

$$p^{C}(s) = \mu(\bigcap_{x \in C} \pi(x)^{-1}(s_{x}))$$

Classical behaviour

p is classical iff exists a distribution $\overline{p}:O^{\mathcal{X}}\to[0,1]$ satisfying, for each context C

$$\overline{p}_C = p^C$$

p in $(\mathcal{X}, \mathcal{C}, O)$ is a quantum behaviour iff exists

- (a) A Hilbert space H
- (b) A function $\theta: \mathcal{X} \to \mathcal{B}(H)^{\mathbb{R}}$
- (c) A density operator $\rho \in \mathbb{B}(H)$

satisfying

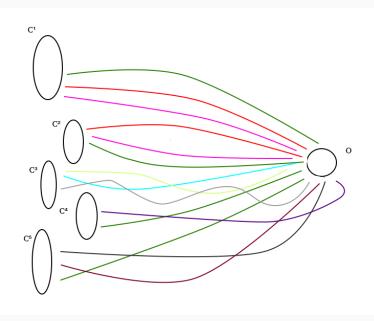
• For any $C \in \mathcal{C}$,

$$[\theta(x), \theta(y)] = 0 \ \forall x, y \in C$$

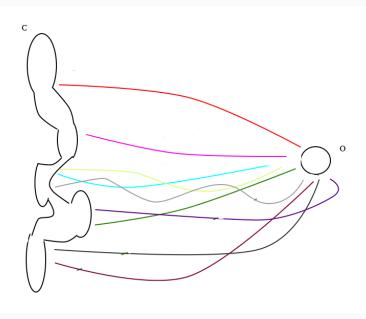
• For any $C \in \mathcal{C}$ and $s \in O^C$

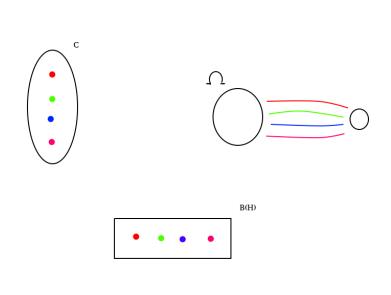
$$p^{C}(s) = \operatorname{Tr}(\rho \prod_{x \in C} P_{s_s}^{(x)})$$

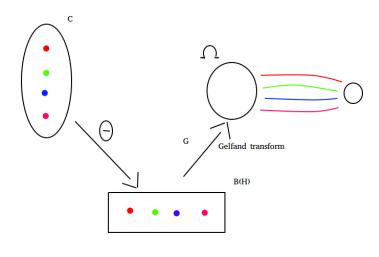
Classical behaviours

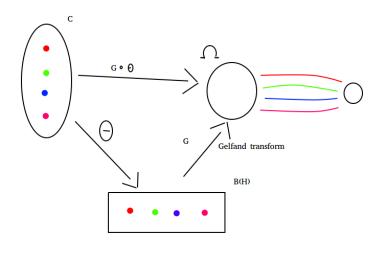


Classical behaviours









• The joint spectrum of $A_1,...,A_n \in \mathcal{B}(H)^\mathbb{R}$ is

$$\Omega^{C} \equiv \sigma(\underline{A}) \equiv \{(\lambda_{1},...,\lambda_{n}) \in \sigma(A_{1}) \times ... \times \sigma(A_{n}); \prod_{i=1}^{n} P_{\lambda_{i}}^{A_{i}} \neq 0\}.$$

• $\widehat{A}_i : \sigma(\underline{A}) \to \sigma(A_i)$ is the projection

$$\sigma(\underline{A}) \ni (\lambda_1, ..., \lambda_n) \mapsto \lambda_i \in \sigma(A_i).$$

Consequently

$$(\lambda_1,...,\lambda_n) = \bigcap_{i=1}^n \widehat{A_i}^{-1}(\lambda_i)$$

• A state ρ defines a probability measure $\mu_{\underline{A}}^{\rho}$ in $\sigma(\underline{A})$ by means of the Born rule:

$$\mu_{\underline{A}}^{\rho}(\bigcap_{i=1}^{n}\widehat{A_{i}}^{-1}(\lambda_{i})) = \mu_{\underline{A}}^{\rho}((\lambda_{1},...,\lambda_{n})) \doteq \operatorname{Tr}(\rho \prod_{i=1}^{n} P_{\lambda_{i}}^{A_{i}})$$

• We also have

$$\mu_{\underline{A}}^{\rho}(\widehat{A}_{i}^{-1}(\lambda)) = \operatorname{Tr}(\rho P_{\lambda}^{A_{i}})$$

$$(\sigma(\underline{A}), \mathcal{P}(\sigma(\underline{A})), \mu_A^\rho)$$
 "satisfies"

$$x_C: \Omega^C \to O$$
 (4)

$$p^{C}(s) = \mu^{C}(\bigcap_{x \in C} x_{C}^{-1}(s_{x}))$$

$$\tag{5}$$

$$p_x^C(o) = \mu^C(x_C^{-1}(o))$$
 (6)

ullet For any $x\in\mathcal{X}$ and $C\in\mathcal{C}_{x}$ we define $p_{x}^{C}:O
ightarrow[0,1]$ by

$$p_x^C(o) \doteq p_{\{x\}}^C(o) = \sum_{\substack{s \in O^C \\ s_x = o}} p^C(s)$$

ullet For any $x\in \mathcal{X}$ and $C\in \mathcal{C}_x$ we define $p_x^{\mathcal{C}}:O
ightarrow [0,1]$ by

$$p_{x}^{C}(o) \doteq p_{\{x\}}^{C}(o) = \sum_{\substack{s \in O^{C} \\ s_{x} = o}} p^{C}(s)$$

• $p_x^C, C \in C_x$

ullet For any $x\in \mathcal{X}$ and $C\in \mathcal{C}_x$ we define $p_x^{\mathcal{C}}:O
ightarrow [0,1]$ by

$$p_{x}^{C}(o) \doteq p_{\{x\}}^{C}(o) = \sum_{\substack{s \in O^{C} \\ s_{x} = o}} p^{C}(s)$$

- $p_x^C, C \in C_x$
- $x_C, C \in \mathcal{C}_x$

ullet For any $x\in \mathcal{X}$ and $C\in \mathcal{C}_x$ we define $p_x^{\mathcal{C}}:O
ightarrow [0,1]$ by

$$p_{x}^{C}(o) \doteq p_{\{x\}}^{C}(o) = \sum_{\substack{s \in O^{C} \\ s_{x} = o}} p^{C}(s)$$

- $p_x^C, C \in \mathcal{C}_x$
- $x_C, C \in \mathcal{C}_x$
- A behaviour defines a system

ullet For any $x\in \mathcal{X}$ and $C\in \mathcal{C}_x$ we define $p_x^{\mathcal{C}}:O
ightarrow [0,1]$ by

$$p_{x}^{C}(o) \doteq p_{\{x\}}^{C}(o) = \sum_{\substack{s \in O^{C} \\ s_{x} = o}} p^{C}(s)$$

- $p_x^C, C \in \mathcal{C}_x$
- $x_C, C \in \mathcal{C}_x$
- A behaviour defines a system

J. V. Kujala, E. N. Dzhafarov, and J.-A. Larsson, "Necessary and sufficient conditions for an extended noncontextuality in a broad class of quantum mechanical systems," Phys. Rev. Lett.,

vol. 115, p. 150401, Oct 2015.