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Overview on quantum steering



Overview on quantum steering

= Introduced by Schrédinger in 1935 to discuss EPR argument

= Rigorously defined for generic mixed states only in 2007 (Wiseman
et al. [3])

= General definition based on one-party entanglement verification

= Finds applications in Quantum Key Distribution (QKD)



Overview on quantum steering

= |ntermediate between entanglement and Bell's inequality violation,
in the hierarchy of quantum correlations

All quantum states
of abiparticeisystem Quantum Discord >0
(density

matrices)




Nonclassicality



Nonclassicality according to the Glauber P-function

b= /@ @a Plpl(a) Ja) o

= Most physical definition of nonclassicality

= Nonclassical whenever the P-function is not a valid probability
distribution

= Necessary for photon antibunching and sub-Poissonian statistics



Nonclassical steering with
TMSTs



TMST states

= Two mode squeezed thermal states

Pas = SO [Pe(Na) ® Den(Ng)] SO ()]
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= They can be separable or entangled: interesting enough for
quantum correlations

= pa=Tre[pag] and pg = Tra[pag] are always classical



Nonclassical steering
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Nonclassical steering
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Nonclassical steering

N A N 1 A =
Pa — Pi\) = TrB[Pi\B)] = ?TTB {pAB (]IA®na)}

(63




Gaussian steering triangoloids
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Figure 1: Gaussian triangoloid of a TMST, in parameter’s space of conditional
CM. pc is the conditional purity, usc is related to conditional squeezing.



Nonclassical steering with TMST states
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Figure 2: Triangoloids for TMST states with Na = Ng = 0.75, r = 1.2 (left)
and with Na = Ng = 2.8, r = 1.2 (right)



Nonclassical steering with TMST states

= Necessary and sufficient condition (clearly asymmetric)

Na(1+2N,
sinh®>r > (1 +2N5)

1+ Njy+ Ng
= Entanglement is necessary but not sufficient
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Figure 3: Slice of parameter's space of TMST states
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Nonclassical steering with
generic two-mode Gaussian state




nclassical steering

Pag is:
= Weakly nonclassically steerable (WNS) if it is possible to
generate nonclassical conditional state with some Gaussian
measurement
Does not imply entanglement
Possible with arbitrarily low (but nonzero) Gaussian
Quantum Discord
= Strongly nonclassically steerable (SNS) if any quadrature
measurement on Bob’s mode will prepare a nonclassical conditional
state of Alice’s mode

Implies EPR steerability, thus also entanglement
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Back to TMSTs

= For TMSTs, weak and strong nonclassical steering are equivalent
= They also coincide with EPR steering

= This fact has a powerful implication: nonclassicality and
entanglement are strongly related, at least for TMST states.
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Conclusion




New q um correlations
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Figure 4: Quantum correlations for two-mode Gaussian states

13



References i

@ M. Frigerio, S. Olivares, and M. G. A. Paris.
Nonclassical steering and the Gaussian steering triangoloids.
preprint, arXiv:2006.11912 [quant-ph].

@ R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Giihne.
Rev. Mod. Phys., 92:015001, 2020.

@ H. M. Wiseman, S. J. Jones, and A. C. Doherty.
Phys. Rev. Lett., 98:140402, 2007.

14



Questions?
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Backup slide 1: WNSN and SNS conditions

WNS
necessary and sufficient condition:
o 1
a= 4 < 50 €= max{|c],|c|} -
SNS
necessary and sufficient condition:
c? 1 .
a— b < 2 d = min{|al,|c[}

EPR steerability
necessary and sufficient condition:



Backup slides: Gaussian
quantum states



CV quantum systems

= Continuous-variable (CV) quantum system of n modes

= Hilbert space: L?(R")
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CV quantum systems

- 520, Trfpl=1

= Characteristic and Wigner functions:

x[1(A) = Tr [pexp(~iNTR)]

D 2n =
IR0 = [ s xpl (e



Gaussian quantum states

= pis Gaussian when:

Wipl(x) =

1 1
7ny\/det[o] P [ 2

= First-moments vector:



Gaussian quantum states

= Similarly, a POVM {ﬁa}ag([j”:

Vae@":ﬁazo, oA, =1
Cn

is Gaussian if all I, have Gaussian Wigner functions

= Uncertainty Relations:



Backup slides: Nonclassicality




P-nonclassicality

= [t can be quantified by nonclassical depth:

A 1-s5 X
Tl = ——=

= |t has a resource character

= Number states (n > 0), Schrédinger cat's states and squeezed
vacuum states are all nonclassical

= Coherent states are only classical pure states. Thermal states are
also classical



Backup slide: covariance
matrices




Conditional covariance matrix

= CM of initial state pyp:

= CM of POVM:

1 1++/1—pcosg —+/1—plsing
g =]
M 2 ts —/1—pssing 1—+/1—pscosep

= CM of f)(AO‘) (conditional CM) does not depend on outcome a:

o6 = A—C'(B+oy)'C



States in canonical form
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= Simplest generalization of TMSTs. p, and pg are still always
classical



Backup slides: Noisy propagation
of twin-beam states




= Two-mode squeezed vacuum states:
) = eGP 10,00

= Mode A interacts with a Markovian, purely thermal environment
with average number of photons N, and damping rate I'

= The TWB state evolves into a generic TMST state



Triangoloid for TWB
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Figure 5: Triangoloid for TWB state with r=1.2.



Noisy evolution of TWB triangoloid
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Figure 6: Snapshots of triangoloid evolution from initial TWB (r=1.2)



Noisy evolution of TWB triangoloid

= Maximum propagation time for nonclassical steering:

1 N
N R I B N, = sinh?
15 r Og{ +/\/t,,(1+2/\/5)} ’ (0l = i)

= Disentangling time:

1 1
tent = FlOg 1+m
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