

Structured glass for low power actuation of thermal phase shifters

ATZENI Simone

The quantum «race»

YIQIS 2020

- Superconducting electronic circuits
- Single ions trapped by electromagnetic fields
- Spin states in quantum dots
- Single photons

Strengths of single photons:

- Moderate cooling required
- Low decoherence
- Long distance transmission of the quantum information
- ☐ There exists a solid technological framework developed for optical communications

Integrated quantum photonics

Bulk optics implementations...

Harris et al., Nat. Photonics 11, 447-453 (2017).

Integrated circuits as enabling technology:

- Miniaturization and complexity
- Scalability and integration density
- Intrinsic optical stability among a high number of components

Femtosecond Laser Micromachining

Femtosecond laser pulses are focused in the bulk of a transparent, dielectric material.

- Nonlinear absorption generates a seed of free electron, multiplied by avalanche ionization
- Energy transfer causes a structural modification of the substrate
- Translation of the substrate allows the fabrication of the device

According to laser – material interaction and energy deposition regime...

- Localized change of the refractive index
- Material ablation and microstructuration

Femtosecond Laser Micromachining

FLM PROVIDES A UNIQUE SET OF ADVANTAGES TO INTEGRATED QUANTUM PHOTONICS

- Single-step maskless approach allows fast prototyping turnaround
- □ Nonlinear absorption can be exploited for the inscription of **complex 3D geometries**
- □ Low refractive index contrast enables **low coupling losses** with single-mode fibers

Sansoni et al., Phys. Rev. Lett. 108, 010502 (2012).

Corrielli et al., Nat. Commun. 4, 1555 (2013).

Crespi et al., New J. Phys. 15, 013012 (2013).

Femtosecond Laser Micromachining

FLM PROVIDES A UNIQUE SET OF ADVANTAGES TO INTEGRATED QUANTUM PHOTONICS

- Low birefringence ($b = 1 \times 10^{-6}$) allows the exploitation of FLM circuits in polarization-encoded applications
- By processing different materials we can investigate new functionalities in composite platforms

Optical processor: a general scheme

IMPLEMENTATION THROUGH A MULTIPORT INTERFEROMETER

Reck et al., Physical Review Letters, 73(58), (1994)

FLM phase shifters implementation

Reconfigurable Mach – Zehnder interferometer

- A phase delay between the arms can be induced by a temperature difference
- Resistive microheater placed on one arm
- Transmission modulated by driving the voltage on the microheater

Flamini et al., Light: Science & Applications 4, e354 (2015).

FLM phase shifters implementation

Reconfigurable Mach – Zehnder interferometer

- A phase delay between the arms can be induced by a temperature difference
- Resistive microheater placed on one arm
- Transmission modulated by driving the voltage on the microheater

What's the bottleneck of this approach?

- Reconfiguration time ~ 100 ms
- \Box High power dissipation (P > 500 mW for 2π)
- Thermal cross-talk

Power dissipation

BASIC STRUCTURE OF THE DEVICE

- Corning Eagle XG (boro-aluminosilicate)
- \Box d = 30 μ m (minimum value for our FLW setup)
- Arr p = 127 μ m \approx state of the art for FLW circuits
- \square $\lambda = 1550 \text{ nm}$

PHASE SHIFT OPERATION

$$\begin{cases} \Delta \phi = \alpha P \\ I_{out} = I_{max}[1 + \cos(\phi_0 + \alpha P)] \end{cases}$$

$$P_{2\pi} = \frac{2\pi}{\alpha}$$

Power dissipation

BASIC STRUCTURE OF THE DEVICE

- Corning Eagle XG (boro-aluminosilicate)
- \Box d = 30 μ m (minimum value for our FLW setup)
- Arr p = 127 µm \approx state of the art for FLW circuits
- \square $\lambda = 1550 \text{ nm}$

PHASE SHIFT OPERATION

$$\begin{cases} \Delta \phi = \alpha P \\ I_{out} = I_{max}[1 + \cos(\phi_0 + \alpha P)] \end{cases}$$

$$P_{2\pi} = \frac{2\pi}{\alpha}$$

Silicon on Insulator	Si ₃ N ₄	Silica on Silicon	FLW
50 mW	600 mW	800 mW	634 mW

Thermal cross-talk

- First neighbour (x = 2p = 254 μm) thermal cross-talk is **58%**
- An effective calibration is not trivial in presence of cross-talk

How can we decrease $P_{2\pi}$ and thermal cross-talk?

- ☐ Thermal isolation prevents the heat diffusion towards the rest of the circuit
- Both power dissipation and thermal cross-talk will benefit from this approach

- ☐ Thermal isolation prevents the heat diffusion towards the rest of the circuit
- Both power dissipation and thermal cross-talk will benefit from this approach

- ☐ Thermal isolation prevents the heat diffusion towards the rest of the circuit
- Both power dissipation and thermal cross-talk will benefit from this approach

TOWARDS FULL THERMAL ISOLATION...

- ☐ Thermal isolation prevents the heat diffusion towards the rest of the circuit
- Both power dissipation and thermal cross-talk will benefit from this approach

TOWARDS FULL THERMAL ISOLATION...

 Temperature increase limited only by the leakage towards the sink

Water-assisted laser ablation

- Water aids debris removal
- Ablated area does not affect focusing condition
- Low processing time

Water-assisted laser ablation

- Water aids debris removal
- Ablated area does not affect focusing condition
- Low processing time

CROSS SECTION

TOP VIEW

Reconfiguration performance: trenches

POWER DISSIPATION

Silicon on Insulator	Si ₃ N ₄	Silica on Silicon	This work
50 mW	600 mW	800 mW	57 mW

☐ Power dissipation is now comparable with SOI devices

Reconfiguration performance: bridge

POWER DISSIPATION

Optical power, I out (a. u.)	0.4	boodada	5 0-		, S. C.	₹ 0 -
		٩	$P_{2\pi} = 37 \text{ mW}$			
otical pov	0.2	d	\	, A		
	0.1		d d d d d d d d d d d d d d d d d d d	, .	Curve fit Experimenta	<u>.</u>
	() 1	0 :	20	30	40
	Electrical power, P (mW)					

Silicon on Insulator	Si ₃ N ₄	Silica on Silicon	This work
50 mW	600 mW	800 mW	37 mW

■ Power dissipation is now comparable with SOI devices

Reconfiguration performance: bridge

THERMAL CROSSTALK

Silicon on Insulator	Si ₃ N ₄	Silica on Silicon	This work
	600 mW	800 mW	37 mW

- Power dissipation is now comparable with SOI devices
- ☐ Thermal cross-talk (first neighbour) drops to 3.5 %

Modeling and FEM simulations

Bridge waveguide is fully isolated, but...

- Reduction in power dissipation is limited (down to 35%)
- Thermal cross-talk is unchanged

September 28th, 2020 ATZENI Simone 15

Modeling and FEM simulations

Bridge waveguide is fully isolated, but...

- Reduction in power dissipation is limited (down to 35%)
- ☐ Thermal cross-talk is unchanged

a thermal leakage should be present

Modeling and FEM simulations

Bridge waveguide is fully isolated, but...

- Reduction in power dissipation is limited (down to 35%)
- Thermal cross-talk is unchanged

a thermal leakage should be present

Analytical study on trenches:

- □ Power dissipation should approach 0 mW when $D_t \rightarrow \infty$
- FEM simulations explain the experimental results by accounting for **air conduction**

Performance in vacuum

EXPERIMENTAL SETUP

- Bridge waveguide configuration
- Vacuum chamber featuring a two-stage pumping system:
 - Medium vacuum (10⁻⁴ bar)
 - ☐ High vacuum (10⁻⁷ bar)

RESULTS

- Power dissipation drops at:
 - 1 mW in medium vacuum
 - 0.72 mW at high vacuum
- ☐ Thermal cross-talk **lower than 0.1** % at high vacuum

Conclusions

- Structuring glass allows one to achieve low power dissipation (37 mW) and thermal cross-talk (3.5%) for the actuation of thermal phase shifters
- Scaling up circuits complexity
- Further performance improvement for vacuum operation

<u>Acknowledgements</u>

Dr. Roberto Osellame CNR - IFN, Milano

Dr. Andrea Crespi Politecnico di Milano

Dr. Francesco Ceccarelli CNR – IFN, Milano

Ciro Pentangelo CNR – IFN, Milano

Francesco Pellegatta VitreaLab GmbH, Wein

F.Ceccarelli, S.Atzeni et al., *Laser and Photonics Reviews*, 2000024 (2020), https://doi.org/10.1002/lpor.202000024

PRIN 2017 - QUSHIP

Composite integrAted Photonic plAtform By ultrafast LasEr micromachining

An ERC Advanced Grant

fastgroup_ifn

fastgroup_ifn