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This work introduces a new architecture for Flavour Tagging based on Deep Sets, which
models the jet as a set of tracks, in order to identify the experimental signatures of jets
containing heavy flavour hadrons using the impact parameters and kinematics of the tracks.
This approach is an evolution with respect to the Recurrent Neural Network (RNN) currently
adopted in the ATLAS experiment, which treats track collections as a sequence. The Deep
Sets model comprises a permutation-invariant and highly parallelisable architecture, leading
to a significant decrease in training and evaluation time, and thus allowing for much faster

<
5 turn-around times for optimisation. Additionally, this permutation invariance encoded in the
< model is more physically motivated than the sequence-based RNN. We compare the Deep Sets
8 algorithm with the RNN benchmark, probe the model to interpret the information learned,
g and provide studies optimising the Deep Sets algorithm by loosening the track selection and
o including additional inputs.
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OUTLINE

A new approach based (and replacing) the previous RNN-based algorithm
As a general remark: FTag algorithms are using either

secondary vertices displaced from the primary vertex

impact parameters of track in the jet (ATLAS RNN algorithm from 2017)

RNN improves the performance of IP2D and IP3D exploiting correlations
between tracks:

jets are track sequences: track order matters
DIPS: jets are sets of unordered tracks (ATL-PHYS-PUB-2020-014, May)
benefits: quicker convergence, faster to train and optimise
Auxiliary studies:
track optimization
how to calibrate in data - skipped here
interpretability of the models, i.e. understand what the network learned.
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(GENERALITIES

in ATLAS (run 2) tracking occurs up to |n|<2.5 in a 2T axial B field

typically 4 pixel measurements points, 8 Si microstrip tracker points, and
many other in the TRT for |n|<2.

Samples: t-tbar with at least one W decaying leptonically (PowhegBox v2+Pythia
8.230 + EvtGen)

Tracking: general quality requirements

>= 7 hits in the silicon layers (pixel and SCT, where dead sensors are not
penalised),

<= 2 missing hits where expected in the silicon layers,
<= 1 hit shared by multiple tracks,

>= 1 hit in the pixel detector, and |n| < 2.5.

Primary vertex = highest sum of pt/2
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TRACKS AND JETS

jets (Antikt4EMPflow, calibrated) must have
pT > 20 GeV and |n|<2.5,

no overlap with generator level muons or electrons from the W, and must pass
the jet vertex tagger optimized for particle flow jets (to suppress pileup)

tracks are associated to jets based on a AR matching (depending on prt, max Dr
=0.45 at pt=20 GeV, Dr=0.25 at pT=200GeV)

tracks must have pT > 1GeV, |d0| < 1 mm, and |z0 sin 8] < 1.5 mm.
Jets are labelled, in order

b-jets: at least one b-hadron (from MC truth) with pr > 5GeV and AR with
respect to the jet axis < 0.3

c-jets, as before
T-jets, as before
else light-flavor jet
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PAST ALGORITHMS

The IP3D algorithm uses

do and zosinO distances (or significance) are used to build templates in 14 nhon
overlapping regions (based on the track hit patter) for b-jets, c-jets, light jets

tracks are assigned probabilities of coming from b-jets, c-jets, light jets based
on the templates (built with simulation)

PDF for the track parameters within a jet are taken as independent:

=> |et level probabilities pi
are derived Dip3p, = log l_[ —l,-’ Dip3p,c = log l_[

Py

ietracks L1 i etracks P lc
The RNN based algorithm aims to overcome this overly simplistic assumption of
independence + it adds new input features

RNNSs (introduced in ATL-PHYS-PUB-2017-003) uses LSTM (long short term
memory) cell to preserve long range correlations between the elements of the
sequence; this improves performance over IP3D even when using exactly the
same input - NOTE: RNN are sequential non parallelizable algorithms
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DIPS vs RNN - 1

DIPS performance is studied in comparison with RNNIP, an evolution of the RNN
algorithm is use within the suite of FTag production algorithms;

RNNIP architecture: To be understood: difference with current standard implementation of the RNN in FTag

inputs

Tracks associated to the

jet are ordered by
decreasing Sdo

The first 15 tracks are

used

S. Spagnolo

100 nodes hidden layer of LSTM
Dropout layer (dropout fraction 20%)
20 node fully connected layer for classification

Input Description

540 dy/o40: Transverse IP significance

570 20 8in /0,0 sine: Longitudinal IP significance

log p{,mc log pirack | p,’;gt: Logarithm of fraction of the jet pr carried by the track
log AR Logarithm of opening angle between the track and the jet axis

IBL hits Number of hits in the IBL: could be { 0, 1, or 2 }

PIX1 hits Number of hits in the next-to-innermost pixel layer: could be { 0, 1, or 2 }
shared IBL hits | Number of shared hits in the IBL

split IBL hits Number of split hits in the IBL

nPixHits Combined number of hits in the pixel layers

shared pixel hits | Number of shared hits in the pixel layers

split pixel hits Number of split hits in the pixel layers == created by multiple charged particles
nSCTHits Combined number of hits in the SCT layers

shared SCT hits | Number of shared hits in the SCT layers

Table 1: Track features used as inputs for RNNIP and DIPS algorithms.
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DIPS vs RNN - 2

DIPS architecture has intrinsically no dependence on the order of the elements
of a set (or arbitrary size) instead of a sequence

A NN (D) is applied to all inputs (p;) of a track [bonus: operation of processing
the tracks in the jet with the network can be easily parallelised -> GPU]

® (track network) extracts relevant track features

The sum of the ® output is processed with a feed-forward NN (F) [naturally
encodes track permutation invariance]

F (jet network) extracts relevant jet features, giving probabilities for b-, c-
light flavour jets

The output is a multi-class classification : pp, pc, pi combined into a b-tagging

discriminant Dp Db
o . Dy, =log
fc can be optimized post-training (1= fo)pi + fepe

(free parameter) accounting for the fraction of c-jets in the non-b jets
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ARCHITECTURE

: m trk features
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Figure 2: Architecture for the DIPS algorithm. The number of hidden units in the different neural network layers

correspond to the final optimized architecture.
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What does it happen at Concatenate ?

What does it happen at 2 (Sum over tracks) ?

|(nJets 100) (ndJets, 100)

Is ndets the jet index ?

(ndJdets, 3)

100 relu units

|
|
|
|
|
?
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RESULTS

DIPS gains 15% (5%) extra rejection power vs light (c-) jets at the same b-jet
efficiency vs RNNIP
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Figure 4: Light-flavour jet rejection as a function of b-jet efficiency (a) and c-jet rejection as a function b-jet efficiency
(b) of the RNNIP (green) and DIPS (purple) algorithms. The central curves and error bands show the mean and
standard deviation, respectively, of the rejection at each b-jet efficiency for 5 trainings. The ratios are computed with
respect to the RNNIP ROC curve.
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RESULTS- FEATURES LEARNED

(o,

>0 => powerful signal indicator

OXik
9Dy <0 => background indicator
Oxik
ngb ~0 => not very informative J
Xik

In summary:

Only the first (max sdo) ~5
tracks matter

Sqo is the most useful feature,
in strong correlation, for the
first track, with the pr
(relative to the jet pt) and AR,
distance from the jet axis

harder fragmentation of
b-quarks w.r.t. c- and
light-flavor quarks

Split/shared IBL (and pixel)
hits in the tracks with largest
Sqo are indicative of
background

nSCTHits
nPixHits

shared SCT hits
split pixel hits
shared pixel hits
split IBL hits
shared IBL hits
IBL hits

PIX1 hits

log AR

log pF

Sz0

Sqo

Xik

b-jets with 8 associated tracks

failing a threshold corresponding
to a 77% b-tagging efficiency

I I I I I I I

- ATLAS Simulation Preliminary
Vs =13 TeV, tt

1 2 3 4 5 6 7

Tracks sorted by sqo

I = feature index, k = track index in the sqo ordered list
Figure 5: Saliency map for b-jets with 8 tracks. The track features are shown on the y-axis, the tracks (ordered by

0.4 /3D,
OXik
0.3
N jets
oD, 1 i oDy
—0.2 == -
Oxixk N = 3xgc)
—0.1
0.0
Pb
Dy =1
bR A= i+ fope
—-0.1
0.2
0.3
0.4

s4,) are listed on the x-axis. The colors in each pixel represent the gradient defined in Equation 4.
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TRAINING END EXECUTION TIME

Model | Parameters | Training time [min] | Time / epoch [s]
RNNIP } 47k ‘ 86 + 13 ‘ 241 + 14

DIPS 49k 44 + 4 78+ 4

Table 2: Timing metrics for trainings performed on Nvidia 2080 Ti GPUs. The nominal value denotes the mean of
five independent trainings, while the error bar is the standard deviation.

Model ] Parameters ‘ GPU Evaluation time [s] ‘ CPU evaluation time [s]
RNNIP ‘ 47k { 170 +£2 ‘ 685 + 84

DIPS 49k 46 + 2 206 + 98

Table 3: Timing metrics for the full test dataset (3 million jets) with GPU evaluations on an NVIDIA Titan X GPU.

The nominal value denotes the mean of five independent trainings, while the error bar is the standard deviation.

Quicker convergence w.r.t. RNNIP
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TRACK OPTIMIZATION

Nominal:

tracks (up to 15) must have pr > 1GeV, |d0| < 1 mm, and |z0 sin 6| < 1.5 mm.
Loose:
tracks (up to 25) must have pr > 0.5GeV, |dO| < 3.5 mm, and |z0 sin 68| < 5 mm.

>4x more pileup tracks, +25% more fragmentation/hadronization tracks,
+20% more b-related tracks

| oose + new features: do and zpsin®

Jet Flavour | Track selection | ng ni nhadr noteer
b-jets nominal 59+27 | 34+18|20+19|04+0.8
loose 81+32[39+18 |25+2.1|1.7+x1.7
c-jets nominal 5125|1710 29+22 | 04+0.8
loose 7.1+3.1 | 1.8+1.0|3.6+24 | 1.7+1.7
Light-flavour nominal 4.6+2.6 - 41+£25]05+0.9
jets loose 6.8+3.3 - 50+£2.7 | 1.8+£2.0

Table 4: The average per jet total number of tracks (n;,r), the number of tracks from heavy flavour decays (ng ,f ), the
number of tracks from hadronisation, excluding those from heavy flavour decays (n?r‘}cdr), and the number of tracks
from mismeasurement, material interactions, and pile-up (n%’ her) are shown for the nominal and loose selections for

. trk
each jet flavour.
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TRACK OPTIMIZATION

Nominal:

tracks (up to 15) must have pr > 1GeV, |d0| < 1 mm, and |z0 sin 6| < 1.5 mm.

Loose:

tracks (up to 25) must have pr > 0.5GeV, |d0| < 3.5 mm, and |z0 sin 8| < 5 mm.

>4x more pileup tracks, +25% more fragmentation/hadronization tracks,
+20% more b-related tracks

| oose + new features: do and zpsin®
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Figure 8: Light-flavour jet rejection as a function of b-jet efficiency (a) and c-jet rejection as a function of b-jet
efficiency (b) of the nominal DIPS setup, DIPS with loose track selection, and Optimised DIPS with the loose

track selection and additional IP inputs. The central curves and error bands show the mean and standard deviation,

respectively, of the rejection at each b-jet efficiency for 5 trainings. The ratios are computed with respect to the DIPS
ROC curve.
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RESULTS
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