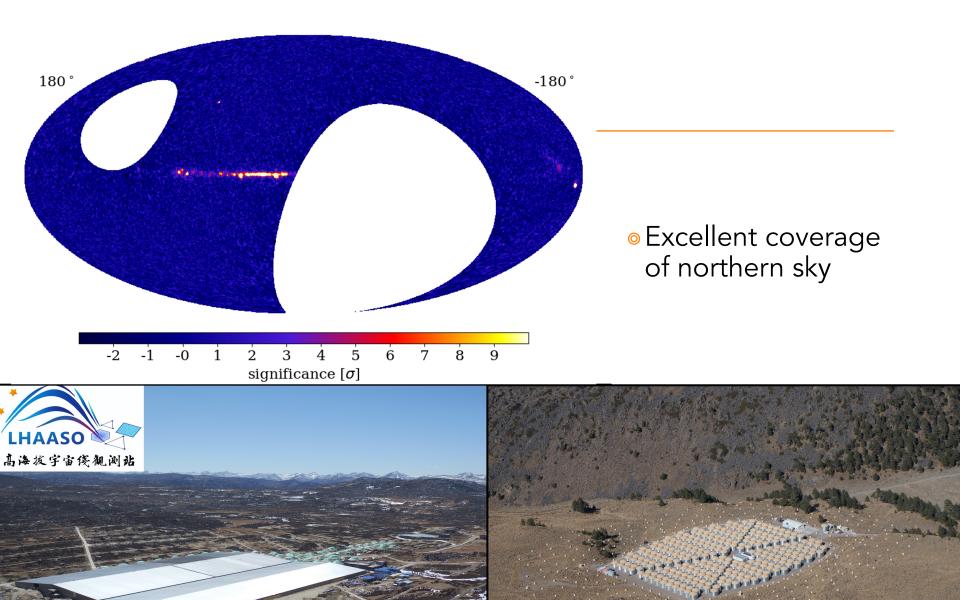
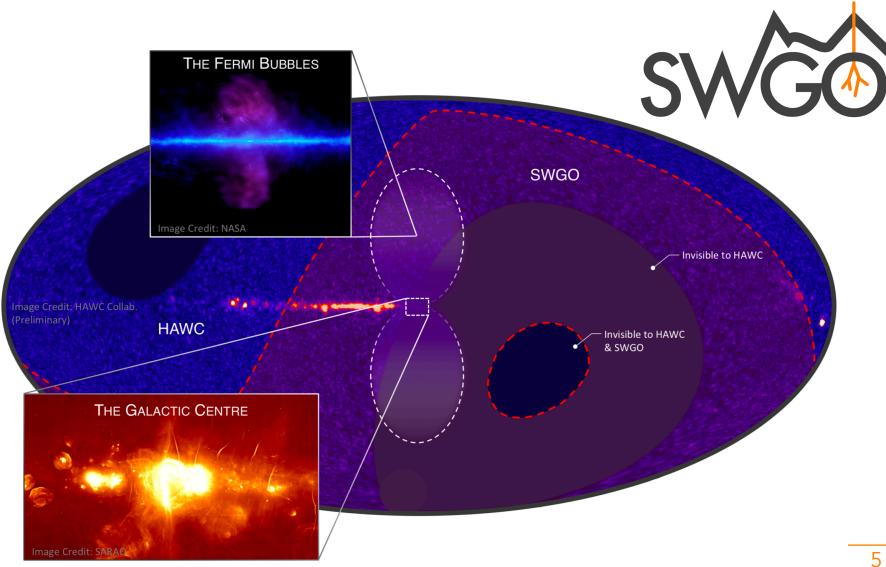
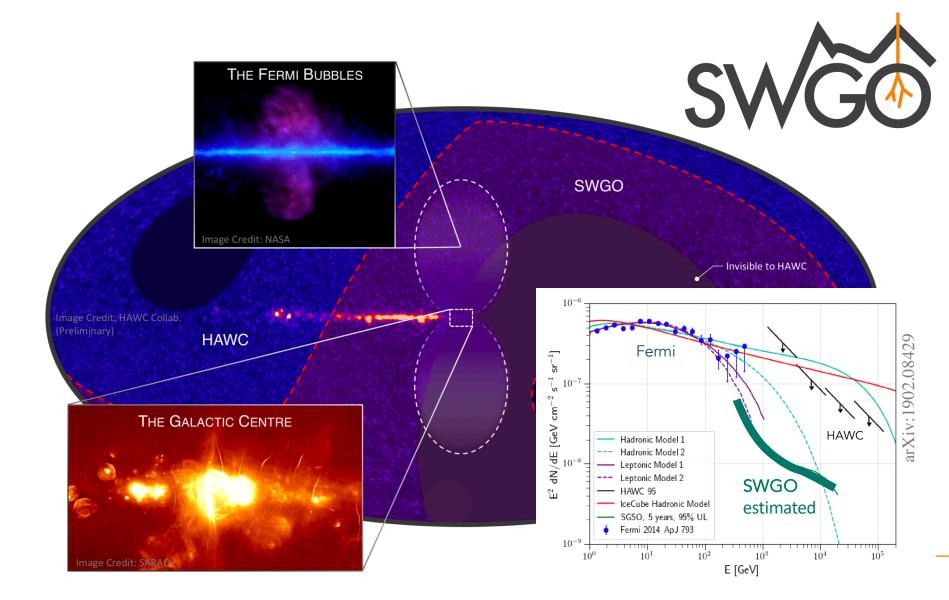

The Southern Wide-Field Gamma-ray Observatory

Fermi, NASA

Jim Hinton (MPIK)




~100% duty-cycle Steradian field of view Modest precision Modest collection area


> Few ns spread in particle arrival at each detector

Few ns light flash

~15% duty-cycle ~4 degree field of view High precision Large collection area

Southern wide-field y-ray Observatory

Series of workshop culminating in Lisbon meeting in May 2019
 – convergence of a large part of community

- Collaboration formed July 2019 around the core concept:
 - Ground-particle detection based high altitude (>4.4 km) gamma-ray observatory latitude -15° to -30°
 - Wide energy range 100s of GeV to 100s of TeV
 - High fill-factor core detector with area considerably larger than HAWC and significantly better sensitivity, with a low density outer array
 - Based primarily on water Cherenkov det. Units

 First collaboration meeting and kick off of 3 year design study phase – Padova Nov. 2019

The SWGO Collaboration

Countries in SWGO

Institutes

Argentina*, Brazil, Czech Republic, Germany*, Italy, Mexico, Peru, Portugal, South Korea, United Kingdom, United States*

Supporting scientists

Australia, Chile, France, Japan, Slovenia, Spain

*also supporting scientists

- 11 countries, 44 institutes, 193 scientists
- Expertise from HAWC, ARGO, MAGIC, HESS, Auger ++

Collaboration

Second collaboration meeting May 2020 – not quite in Mexico City!

1.1 Water Cherenkov Detector Mechanics 1.2 Photo-detectors Planning 1.Instrument 1.3 Electronics Chain 1.4 DAQ & Trigger 1.5 Aux. Systems 2.1 Access 2. 2 Power SWGO R&D Phase Milestones 2.3 Computing & Network 2. Infrastructure M1 **R&D** Phase Plan Established - 2.4 Water M2 Science Benchmark Cases Chosen 2.5 Operations Building **M3 Reference Configuration & Options Defined** 2.6 Support Facilities SWGO **M**4 Site Shortlist Complete **M5** Candidate Configurations Defined 3.1 Control & DAQ Framework **M6** Performance of Candidate Configurations Evaluated 3.2 Data Processing M7 Preferred Site Identified 3. Software **M8** - 3.3 Simulations Design Finalised M9 **Construction & Operation Proposal Complete** 3.4 Data Archive Figure 3: Table of Milestones for the R&D Project Phase. 3.5 Science User Tools 2019 2020 2021 2022 Milestone 4.1 Operation & Maintenance Plans Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 R&D Phase Plan Established M1 - 4.2 Data Management Plans Science Benchmark Cases Chosen M2 **Reference Configuration & Options Defined** M3 M4 Site Shortlist Complete 4. Documentation 4.3 Safety Plans

M5

M6

M7

M8

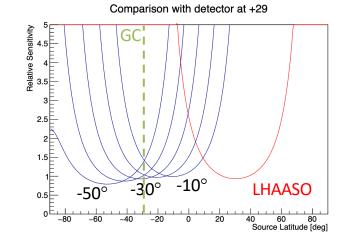
M9

- 4.4 Manuals

4.5 Outreach Plan & Materials

Candidate Configurations Defined

Preferred Site Identified


Design Finalised

Perf. of Candidate Configurations Evaluated

Construction & Operation Proposal Complete

Site?

>4.4 km above sea level Good access to Galactic Centre Good overlap with LHAASO Latitude ~ -25 to -15 degrees

Site?

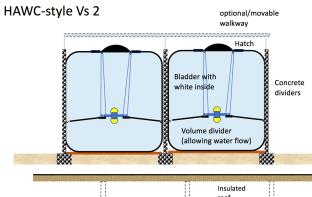
ns 50 km 📖

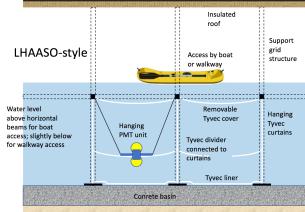
e.g.

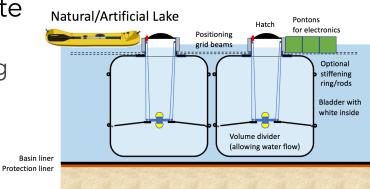
 Detailed characterisa tion work started

→ Shortlist by end 2020

Detector Options

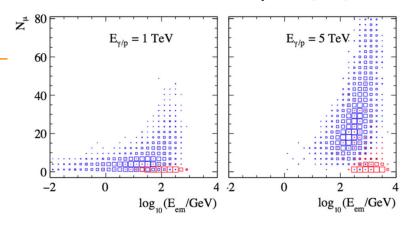

- Water Cherenkov detector units is core technology -three options under evaluation
 - → Tanks, Ponds and Lake-based

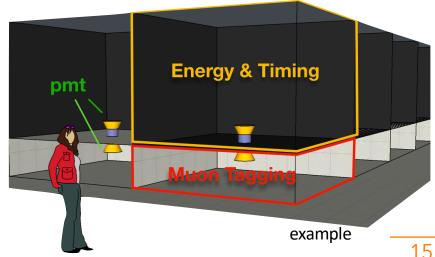

All aspects being optimised


→ Unit dimensions, wall reflectivities, photosensor nature/locations, ...

Final design will depend on choice of site

→ e.g. cost of water transportation in comparison to other costs, civil engineering costs, feasibility for lake-based solution

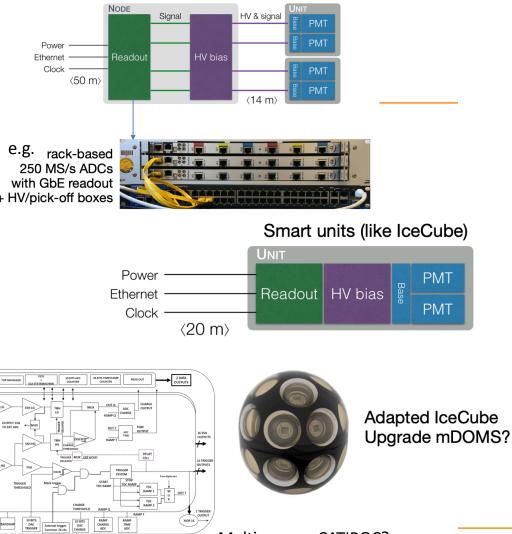


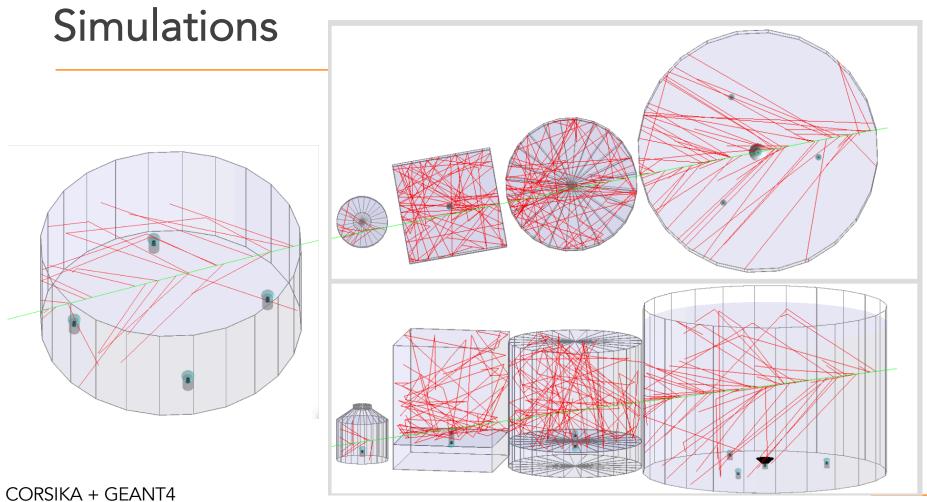


Eur. Phys. J. C (2019) 79:427

Muon Identification

- Muon tagging has huge potential for gamma/hadron sep. (above about 1 TeV) → c.f. <u>LHAASO</u>
- Aim to incorporate muon
 identification in to (all of) the water Cherenkov detector units
 - → Double layer, or
 - → Multi-sensor time and intensity measurements to tag single through-going particles




Tab. 1Compatibility of the proposed combinations and options—green: compatible, yellow: disfavoured, red: incompatible.

PBS Item		Option	Multi-pixel DOMs	Active Cells	Passive Cells
WCD Mechanics	Water Container	Bladder in tank			
		Bladder in matrix			
		Bladder in lake			
		Segmented pool & roof			
	Optical Separator	None			
		Divider			
Photodetectors	Detector & Base	Single PMTs			
		Single SiPM array(s)			
		Multi-pixel module			
		Matrix of PMTs/SiPMs			
	Magnetic Shield	None			
		Mu-metal cylinder			
	Light Guide	None			
		Winston cone			
		Baffle			
		WLS fibres			
Electronics Chain	Photodetector Supply	Multi-channel HV			
		Active base			
	Signal pick-off and	Active			
	Shaper	Passive	y.	y y	y y
	Digitiser	Sampling			
		TDC/ToT		У	y y
	Cabling and	Coaxial		y y	
	Connectors	Differential	y y		y .
		Optical			
	Timing Distribution	WR-like			
		RapCal-like			

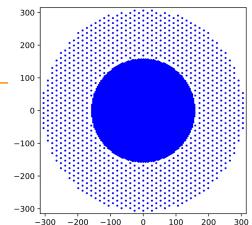
Nodes (like HAWC outriggers)

Multi-sensor, CATIROC?

Building on HAWC simulation & analysis framework

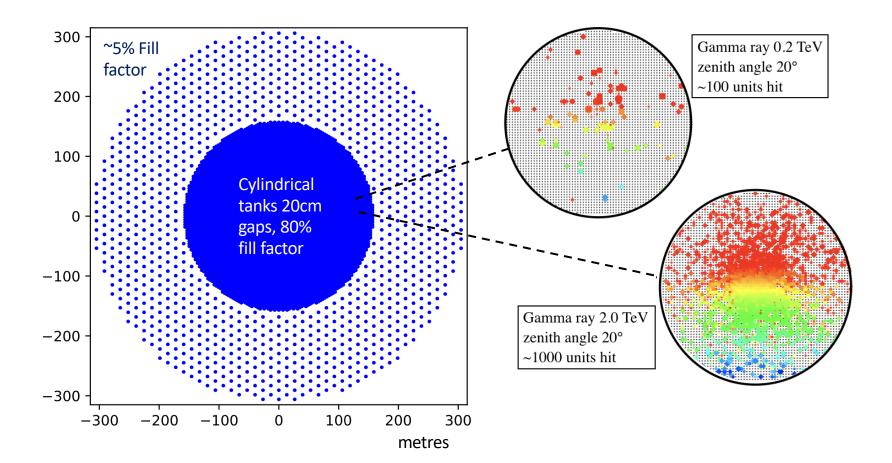
80% Fill factor inner region 160m radius

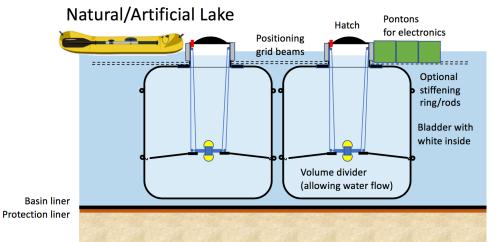
Reference Configuration


Defining right now a 'Reference Configuration'

- → Plausible and costable, not yet optimised
- $\makebox{--}$ Start point for simulations and analysis development

Simulate a 'super-configuration'


- → Subset is Reference Configuration
- → Simultaneously test:
 - Single layer, multi-sensor v double layer
 - White v. black walls
 - Larger/smaller arrays
 - Higher QE PMTs, etc, etc

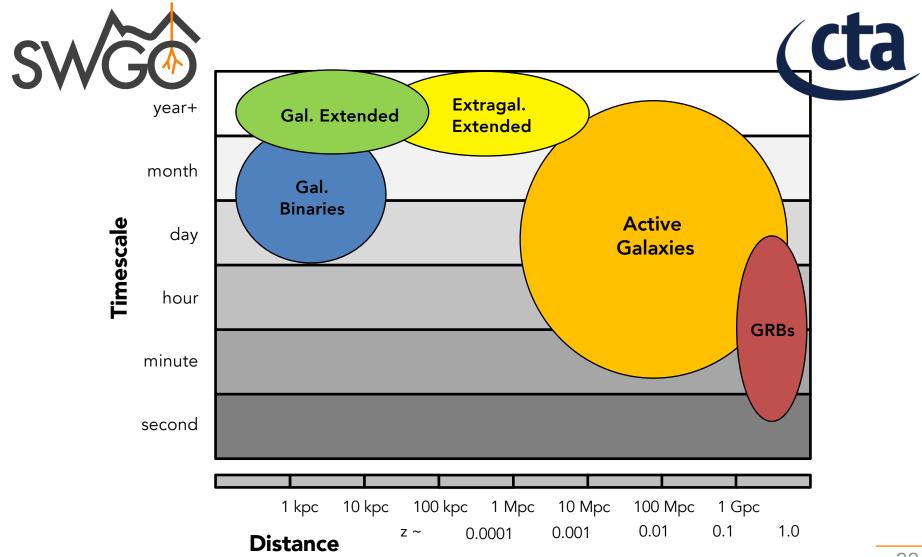


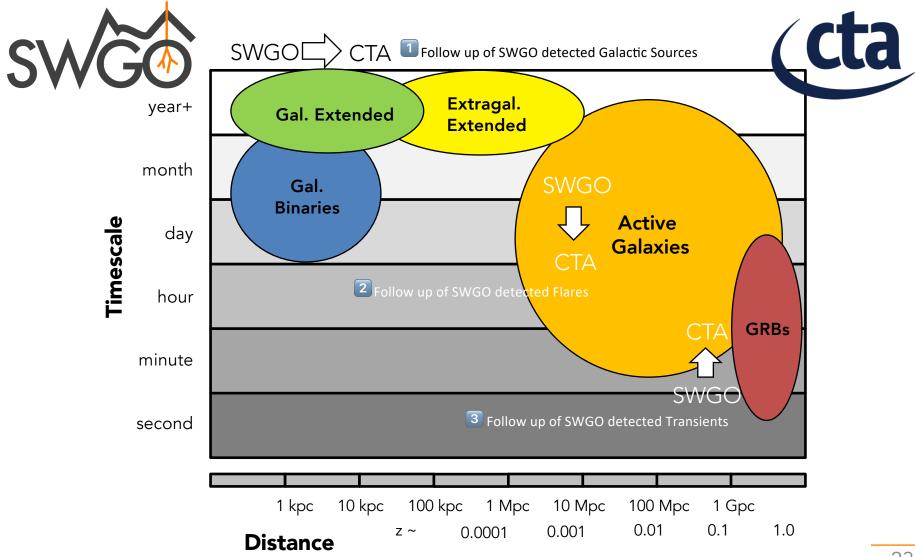
Events

19

Lake Concept

Test facility just being finished at MPIK


10m diam, 6m high

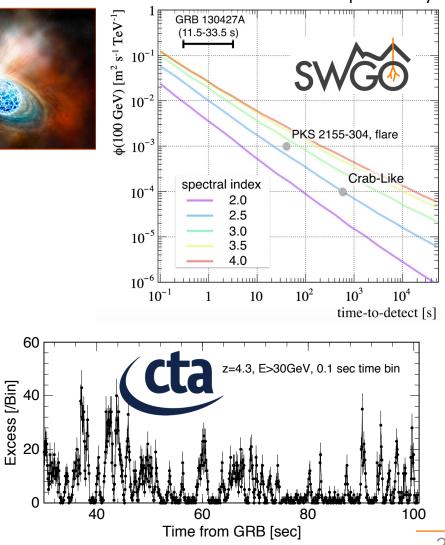


Science Performance Benchmarks

SCIENCE CASE	BENCHMARK	Instantiations	Crucial design parameter	Crucial design parameter	Added Value	Latitude
Short-timescale phenomena	Minimum transient timescale at 5- sigma detection level for given observed spectra/flux	(i) Number of GRB triggers per year(ii) Number of AGN flare alerts per year	Detection low- energy threshold	Real-time analysis /trigger capability	Unique VHE South trigger instrument	N/A
PeVatrons & UHECRs	Max energy of exponential cut off in PWL spectra detected at 95% C.L. for given ref flux level.	(i) Number of PeVatrons detected?	Flux Sensitivity at 100+ TeV	Energy resolution better than at 100 TeV	Unique for PeV census & CenA	Lat S > 15 deg
PWNe and Haloes	Minimum distinguishable spectral index between two PWL spectra for a given angular size (TBD ref. flux level and energy scale)	 (i) Number of (spectrally resolved) PWNe detected (ii) Number of (resolved) haloes detected 	Flux sensitivity at 10s TeV	Angular resolution at few 10s TeV	Unique Galactic Plane access	Lat S < 25 deg
Diffuse emission	Level of residual charged cosmic-ray background for diffuse gamma detection at 30 TeV	gamma/hadron separation level at 1E-5 at 30 TeV	Flux sensitivity at 20+ TeV	Gamma/hadron separation power at 20+ TeV	Detectability of diffuse emission below 100 TeV	Lat S > 15 deg
Dark Matter	Sigma-v limit attainable as a function of energy for GC.	(i) Limits for GC and Halo (ii) Limits from Dwarfs	Flux sensitivity at 100 TeV	Energy resolution better than 15% at 100 TeV	Unique probing capability wrt to any instrument	Lat S > 15 deg
Cosmic-ray anisotropy	Minimum detectable amplitude to a dipole anisotropy at given PeV scale; AND Maximum multipole order detectable at 5-sigma level @ 10 TeV	Long term: minimum detectable amplitude for 10 deg scale @ 100 TeV?	Extended FoV	Energy resolution at 10 TeV	Unique LHAASO complement to full sky coverage	Lat S range : [-40, -10] deg
Cosmic-ray composition	δA/A < 0.8 at PeV scale	May be expanded to include mass-resolved anisotropy sensitivity for e.g. p+ and Fe.	Mass resolution = good muon tagging		Unique among any instrument	N/A
Survey	Survey depth for point sources after 1 year and 5 years integration time for Z < 30°	Number of expected source detections for selected object classes?	Point source sensitivity		Unique sky coverage	N/A

 Science Benchmarks under development
 → optimisation of the detector design for best science performance

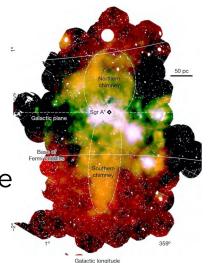
v. preliminary

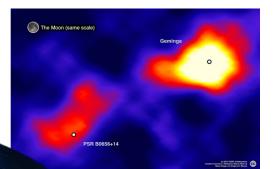

GRBs

- The big news of 2019
 - → 3 GRB detections -HESS+MAGIC
 - \rightarrow Emission up to ~TeV established
 - \rightarrow Emission deep in to afterglow
 - → All Swift-BAT triggers

Most GRBs are not well localised

- → BAT FoV is 1.4 sr
- → SWGO as a finder for VHE bursts →triggers to CTA

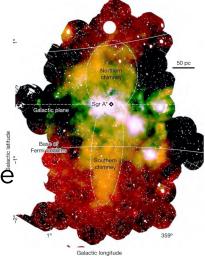


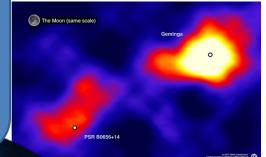

CTA simulation based on GRB 080916C

Large-scale emission

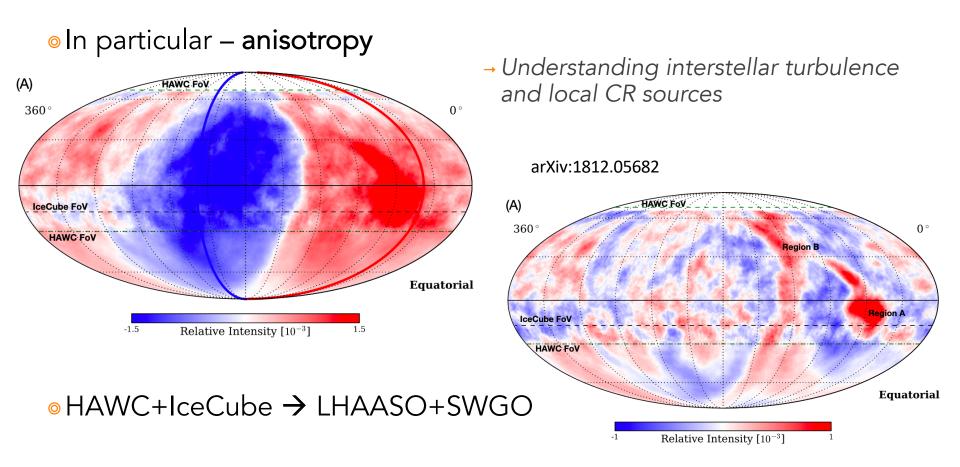
CTA will give the detailed view of the Galactic Plane
 SWGO?

- → Local (off-plane, large angular size) sources
- → Diffuse Galactic Emission (e.g. atomic gas and IC emission up to large scale heights)
- \rightarrow CMZ \rightarrow Chimneys \rightarrow Fermi Bubbles
- → 'Halos' around CR accelerators
- → WIMP search




Large-scale emission

CTA will give the detailed view of the Galactic Plane
 SWGO?


- → Local (off-plane, large ang
- → Diffuse Galactic Emission (emission up to large scale
- \rightarrow CMZ \rightarrow Chimneys \rightarrow Ferm
- → 'Halos' around CR accelera
- → WIMP search

SWGO+LHAASO: Very powerful in combination with the neutrino sky from IceCube-Gen2. & KM3Net: ARCA

Cosmic ray measurements

Conclusions

Strong motivation for a southern hemisphere wide field of view high duty cycle detector!

- SWGO 3 year design/preparation period \rightarrow project launch!
- Strong complementarity between SWGO & CTA
 - Detecting hard spectrum sources \rightarrow CTA follow-up
 - Triggering CTA: flares and transients
 - Large scale emission complementing CTAs detailed view

SWGO & LHAASO

- o Huge potential for scientific and technical synergies!
- SWGO collaboration very enthusiastic about collaboration

Fermi, NASA