Cosmic Ray Anisotropy

Markus Ahlers
Niels Bohr Institute, Copenhagen

Virtual Workshop on

"Multimessenger high energy astrophysics in the era of LHAASO" July 27-29, 2020

VILLUM FONDEN

Galactic Cosmic Rays

- Standard paradigm:

Galactic CRs accelerated in supernova remnants
\checkmark sufficient power: $\sim 10^{-3} \times \mathrm{M}_{\odot}$ with a rate of ~ 3 SNe per century [Baade \& Zwicky'34]

- galactic CRs via diffusive shock acceleration?

$$
n_{\mathrm{CR}} \propto E^{-\gamma} \quad \text { (at source) }
$$

- energy-dependent diffusion through Galaxy

$$
n_{\mathrm{CR}} \propto E^{-\gamma-\delta} \quad \text { (observed) }
$$

- arrival direction mostly isotropic

Galactic Cosmic Ray Anisotropy

Cosmic ray anisotropies up to the level of one-per-mille at various energies (Super-Kamiokande; Milagro; ARGO-YBJ; EAS-TOP, Tibet AS- γ; IceCube; HAWC)

[e.g. review by MA \& Mertsch'16]

Galactic Cosmic Ray Anisotropy

Cosmic ray anisotropies up to the level of one-per-mille at various energies (Super-Kamiokande; Milagro; ARGO-YBJ; EAS-TOP, Tibet AS- γ; IceCube; HAWC)

Energy-Dependence

Large-scale (dipole) anisotropy has strong energy dependence with phase-flip around 100 TeV .

			1	1	1					
-1	-0.8	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	1
			Relative Intensity [$\times 10^{-3}$]					[IceCube \& IceTop'16]		

Energy-Dependence

Large-scale (dipole) anisotropy has strong energy dependence with phase-flip around 100 TeV .

Energy-Dependence

Large-scale (dipole) anisotropy has strong energy dependence with phase-flip around 100 TeV .

Energy-Dependence

Large-scale (dipole) anisotropy has strong energy dependence with phase-flip around 100 TeV .

-1	-0.8	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	1
			Relative Intensity [$\times 10^{-3}$]					[IceCube \& IceTop'16]		

Energy-Dependence

Large-scale (dipole) anisotropy has strong energy dependence with phase-flip around 100 TeV .

			1	1	1					
-1	-0.8	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	1
			Relative Intensity [$\times 10^{-3}$]					[IceCube \& IceTop'16]		

Energy-Dependence

Large-scale (dipole) anisotropy has strong energy dependence with phase-flip around 100 TeV .

Energy-Dependence

Large-scale (dipole) anisotropy has strong energy dependence with phase-flip around 100 TeV .

			1	1	1					
-1	-0.8	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	1
			Relative Intensity [$\times 10^{-3}$]					[IceCube \& IceTop'16]		

Energy-Dependence

Large-scale (dipole) anisotropy has strong energy dependence with phase-flip around 100 TeV .

Energy-Dependence

Large-scale (dipole) anisotropy has strong energy dependence with phase-flip around 100 TeV .

-3	-2.4									
		-1.8	-1.2	-0.6	0	0.6	1.2	1.8	2.4	3
			Relative Intensity [$\times 10^{-3}$]					[IceCube \& IceTop'16]		

Energy-Dependence

Large-scale (dipole) anisotropy has strong energy dependence with phase-flip around 100 TeV .

-3	-2.4									
		-1.8	-1.2	-0.6	0	0.6	1.2	1.8	2.4	3
			Relative Intensity [$\times 10^{-3}$]					[IceCube \& IceTop'16]		

Time-Dependence

No significant variation of $\mathrm{TeV}-\mathrm{PeV}$ anisotropy over time scales of $\mathcal{O}(10)$ years.

phase 7
phase 8

 phase 9

[Tibet-AS $\left.\gamma^{\prime} 10\right]$

Recent Highlight: Auger Dipole Anisotropy

Energy [EeV]	Dipole component d_{z}	Dipole component d_{\perp}	Dipole amplitude d	Dipole declination $\delta_{\mathrm{d}}\left[{ }^{\circ}\right.$]	Dipole right ascension α_{d} [${ }^{\circ}$]
4 to 8	-0.024 ± 0.009	$0.006_{-0.003}^{+0.007}$	$0.025_{-0.007}^{+0.010}$	-75_{-8}^{+17}	80 ± 60
8	-0.026 ± 0.015	$0.060_{-0.010}^{+0.011}$	$0.065_{-0.009}^{+0.013}$	-24_{-13}^{+12}	100 ± 10

[Auger, Science'17]

Anisotropy Reconstruction

Reconstruction Methods

X data is strongly time-dependent:

- detector deployment/maintenance
- atmospheric conditions (day/night, seasons)
- power outages,...
X local anisotropies of detector:
- detector geometry
- mountains
- geo-magnetic fields,...
- two analysis strategies:
- Monte-Carlo \& monitoring (limited by systematic uncertainties)
- data-driven likelihood methods (limited by statistical uncertainties)

example: KASCADE-Grande data
[MA'19]

Data-Driven: East-West Method

- Strong time variation of cosmic ray background level can be compensated by differential methods.
[e.g. Bonino et al.'11]
- East-West asymmetry:

$$
A_{\mathrm{EW}}(t) \equiv \frac{N_{\mathrm{E}}(t)-N_{\mathrm{W}}(t)}{N_{\mathrm{E}}(t)+N_{\mathrm{W}}(t)} \simeq \underbrace{\Delta \alpha \frac{\partial}{\partial \alpha} \delta I(\alpha, 0)}_{\text {if dipole! }}+\underbrace{\text { const }}_{\text {local asym. }}
$$

- For instance, binned KASCADE-Grande data (2.7 PeV, 6.1 PeV \& 33 PeV): [MA'19]

(no significant dipole anisotropy found)

Data-Driven: Likelihood Reconstructions

X East-West method introduces cross-talk between higher multipoles, regardless of field of view.
\rightarrow Alternatively, data can be analyzed to simultaneously reconstruct:

- relative acceptance $\mathcal{A}(\varphi, \theta)$ (in local coordinates)
- relative intensity $I(\alpha, \delta)$ (in equatorial coordinates)
- background rate $\mathcal{N}(t)$ (in sidereal time)
- expected number of CRs observed in sidereal time bin τ and local coordinate i :

$$
\mu_{\tau i}=\mu\left(\mathcal{I}_{\tau i}, \mathcal{N}_{\tau}, \mathcal{A}_{i}\right)
$$

- reconstruction via maximum likelihood:

$$
\mathcal{L}(n \mid I, \mathcal{N}, \mathcal{A})=\prod_{\tau i} \frac{\left(\mu_{\tau i}\right)^{n_{\tau i}} e^{-\mu_{\tau i}}}{n_{\tau i}!}
$$

- Maximum can be reconstructed by iterative methods.
\rightarrow used in joint IceCube \& HAWC analysis

Example: KASCADE-Grande

Sidereal anisotropy in the KASCADE-Grande data with median energy of 2.7 PeV (bin 1), 6.1 PeV (bin 2) and $33 \mathrm{PeV}(\operatorname{bin} 3)$.

Small-Scale Feature At the 2nd Knee?

$\operatorname{bin} 3$: post-trial significance (20° smoothing, $\sigma_{\max }=4.16$)

[MA'19]
Small-scale anisotropy of 33 PeV cosmic rays overlaps with Cygnus region. (gyro radius $<10 \mathrm{pc}$; neutron decay length $\simeq 300 \mathrm{pc}$)

Issues with Data-Driven Reconstruction

- ground-based detectors need to be calibrated by CR data
- true CR dipole defined by amplitude A_{1}, and orientation (RA,DEC) $=\left(\alpha_{1}, \delta_{1}\right)$
\times observable: projected dipole with amplitude $A_{1}^{\prime}=A_{1} \cos \delta_{1}$ and orientation $\left(\alpha_{1}, 0\right)$
[luppa \& Di Sciascio'13; MA et al.'15]

Issues with Data-Driven Reconstruction

- ground-based detectors need to be calibrated by CR data
- true CR dipole defined by amplitude A_{1}, and orientation (RA,DEC) $=\left(\alpha_{1}, \delta_{1}\right)$

X observable: projected dipole with amplitude $A_{1}^{\prime}=A_{1} \cos \delta_{1}$ and orientation $\left(\alpha_{1}, 0\right)$

Issues with Data-Driven Reconstruction

- ground-based detectors need to be calibrated by CR data
- true CR dipole defined by amplitude A_{1}, and orientation (RA,DEC) $=\left(\alpha_{1}, \delta_{1}\right)$

X observable: projected dipole with amplitude $A_{1}^{\prime}=A_{1} \cos \delta_{1}$ and orientation $\left(\alpha_{1}, 0\right)$

Issues with Data-Driven Reconstruction

- ground-based detectors need to be calibrated by CR data
- true CR dipole defined by amplitude A_{1}, and orientation (RA,DEC) $=\left(\alpha_{1}, \delta_{1}\right)$
\mathbf{X} observable: projected dipole with amplitude $A_{1}^{\prime}=A_{1} \cos \delta_{1}$ and orientation $\left(\alpha_{1}, 0\right)$ [luppa \& Di Sciascio'13; MA et al.'15]

Issues with Data-Driven Reconstruction

- ground-based detectors need to be calibrated by CR data
- true CR dipole defined by amplitude A_{1}, and orientation (RA,DEC) $=\left(\alpha_{1}, \delta_{1}\right)$
\mathbf{X} observable: projected dipole with amplitude $A_{1}^{\prime}=A_{1} \cos \delta_{1}$ and orientation ($\alpha_{1}, 0$) [luppa \& Di Sciascio'13; MA et al.'15]

Take-Away on Dipole Reconstruction

Data-driven methods of anisotropy reconstructions used by ground-based observatories are only sensitive to equatorial dipole
(or, more generally, to all $m \neq 0$ multipoles)

$$
\Delta \delta_{\perp} \sim \frac{1}{\sqrt{N_{\mathrm{tot}}}} \quad \mathcal{N} \sim \frac{4 \pi}{N_{\mathrm{tot}}}
$$

Monte-Carlo-based methods of anisotropy reconstructions are sensitive to the full dipole, but are limited by systematic uncertainties.

Large-Scale Anisotropy

Cosmic Ray Dipole Anisotropy

Cosmic Ray Dipole Anisotropy

- Spherical harmonics expansion of relative intensity yields:

$$
I(\Omega)=1+\underbrace{\delta \cdot \widehat{\mathbf{n}}(\Omega)}_{\text {dipole }}+\sum_{\ell \geq 2} \sum_{m} a_{\ell m} Y^{\ell m}(\Omega)
$$

- cosmic ray density $n_{\mathrm{CR}} \propto E^{-\Gamma_{\mathrm{CR}}}$ and dipole vector δ from diffusion theory:

$$
\underbrace{\partial_{t} n_{\mathrm{CR}} \simeq \nabla\left(\mathbf{K} \nabla n_{\mathrm{CR}}\right)+Q_{\mathrm{CR}}}_{\text {diffusion equation }} \text { and } \underbrace{\delta \simeq 3 \mathbf{K} \nabla n_{\mathrm{CR}} / n_{\mathrm{CR}}}_{\text {from Fick's law }}
$$

- diffusion tensor \mathbf{K} in general anisotropic (background field \mathbf{B}):

$$
K_{i j}=\kappa_{\|} \widehat{B}_{i} \widehat{B}_{j}+\kappa_{\perp}\left(\delta_{i j}-\widehat{B}_{i} \widehat{B}_{j}\right)+\kappa_{A} \epsilon_{i j k} \widehat{B}_{k}
$$

- relative motion v of the observer in plasma rest frame (\star) : \quad [Compton \& Getting'35]

$$
\delta=\delta^{\star}+\underbrace{\left(2+\Gamma_{\mathrm{CR}}\right) v / c}_{\text {Compton-Getting effect }}
$$

TeV-PeV Dipole Anisotropy

- reconstructed diffuse dipole:

$$
\delta^{\star}=\delta-\underbrace{\left(2+\Gamma_{\mathrm{CR}}\right) \beta}_{\text {Compton-Getting }}=3 \mathbf{K} \cdot \nabla n^{\star} / n^{\star}
$$

- projection onto equatorial plane:

$$
\delta_{\mathrm{EP}}^{\star}=\left(\delta_{0 \mathrm{~h}}^{\star}, \delta_{6 \mathrm{~h}}^{\star}\right)
$$

- strong regular magnetic fields in the local environment
\rightarrow diffusion tensor reduces to projector:
[e.g. Mertsch \& Funk'14; Schwadron et al.'14]

$$
K_{i j} \rightarrow \kappa_{\|} \widehat{B}_{i} \widehat{B}_{j}
$$

- $\mathrm{TeV}-\mathrm{PeV}$ dipole data consistent with magnetic field direction inferred by IBEX data
[McComas et al.'09]

Known Local Supernova Remnants

- projection maps source gradient onto $\widehat{\mathbf{B}}$ or $-\widehat{\mathbf{B}}$
\rightarrow dipole phase α_{1} depends on orientation of magnetic hemispheres
- intersection of magnetic equator with Galactic plane defines two source groups:

$$
\begin{aligned}
& 120^{\circ} \lesssim l \lesssim 300^{\circ} \rightarrow \alpha_{1} \simeq 49^{\circ} \\
& -60^{\circ} \lesssim l \lesssim 120^{\circ} \rightarrow \alpha_{1} \simeq 229^{\circ}
\end{aligned}
$$

Phase-Flip by Vela SNR?

- $1-100 \mathrm{TeV}$ phase indicates dominance of a local source within longitudes:

$$
\begin{array}{|llllll|}
\hline & \text { all SNR }(\langle n\rangle) & \star & \text { Vela } & \ddots & \text { Geminga } \\
\boldsymbol{\Delta} & \text { Loop 1 } & \star & \text { Monogem } & \square & \text { Cygnus Loop } \\
\hline
\end{array}
$$

Position of SNR

Relative position of the five closest known SNRs. The magnetic field direction (IBEX) is indicated by blue \times and the magnetic horizon by a dashed line.

Position of SNR

Relative position of the five closest known SNRs. The magnetic field direction (IBEX) is indicated by blue \times and the magnetic horizon by a dashed line.

Phase-Flip by Vela SNR

- $1-100 \mathrm{TeV}$ phase indicates dominance of a local source within longitudes:

$$
120^{\circ} \lesssim l \lesssim 300^{\circ}
$$

- plausible scenario: Vela SNR
- age $: \simeq 11,000 \mathrm{yrs}$
- distance $: \simeq 1,000$ lyrs
- SNR rate : $\mathcal{R}_{\mathrm{SNR}}=1 / 30 \mathrm{yr}^{-1}$
- (effective) isotropic diffusion:

$$
K_{\text {iso }} \simeq 4 \times 10^{28}(E / 3 \mathrm{GeV})^{1 / 3} \mathrm{~cm}^{2} / \mathrm{s}
$$

- Galactic half height : $H \simeq 3 \mathrm{kpc}$
- instantaneous $C R$ emission $\left(Q_{\star}\right)$

Small-Scale Anisotropy

Small-Scale Anisotropy

- Significant TeV small-scale anisotropies down to angular scales of $\mathcal{O}(10)$ degrees.
- Strong local excess ("region A") observed by Northern observatories.
[Tibet-AS γ '06; Milagro'08]
[ARGO-YBJ'13; HAWC'14]
- Angular power spectra of IceCube and HAWC data show excess compared to isotropic arrival directions. [IceCube'11; HAWC'14]

$$
C_{\ell}=\frac{1}{2 \ell+1} \sum_{m=-\ell}^{\ell}\left|a_{\ell m}\right|^{2}
$$

Small-Scale Anisotropy from Local Turbulence

CMB temperature fluctuations

small scale temperature fluctuations

Cosmic Ray Gradient

small scale anisotropies

Small-Scale "Theorem"

- Assumptions:
- absences of cosmic ray sources and sinks
- isotropic and static magnetic turbulence
- initially, homogeneous phase space distribution
- Theorem: The sum over the ensemble-averaged angular power spectrum is constant:

$$
\sum_{\ell}(2 \ell+1)\left\langle C_{\ell}(t)\right\rangle=\mathrm{const}
$$

- Proof via Liouville's theorem and angular auto-correlation function.
\rightarrow Wash-out of individual moments by diffusion (rate $v_{\ell} \propto \ell(\ell+1)$) has to be compensated by generation of small-scale anisotropy.
\rightarrow Theorem implies small-scale angular features from large-scale average dipole anisotropy.

Comparison to CR Data

Simulation via Backtracking

- Consider a local (quasi-)stationary solution of the diffusion approximation:

$$
4 \pi\langle f\rangle \simeq n_{\mathrm{CR}}+\underbrace{(\mathbf{r}-3 \widehat{\mathbf{p}} \mathbf{K}) \nabla n_{\mathrm{CR}}}_{1 \text { st order correction }}
$$

- Ensemble-averaged C_{ℓ} 's $(\ell \geq 1)$:

$$
\frac{\left\langle C_{\ell}\right\rangle}{4 \pi} \simeq \int \frac{\mathrm{~d} \hat{\mathbf{p}}_{1}}{4 \pi} \int \frac{\mathrm{~d} \hat{\mathbf{p}}_{2}}{4 \pi} P_{\ell}\left(\hat{\mathbf{p}}_{1} \hat{\mathbf{p}}_{2}\right) \lim _{T \rightarrow \infty} \underbrace{\left\langle\mathbf{r}_{1 i}(-T) \mathbf{r}_{2 j}(-T)\right\rangle}_{\text {relative diffusion }} \frac{\partial_{i} n_{\mathrm{CR}} \partial_{j} n_{\mathrm{CR}}}{n_{\mathrm{CR}}^{2}}
$$

Simulation via Backtracking

- simulation in isotropic \& static magnetic turbulence with

$$
\overline{\delta \mathbf{B}^{2}}=\mathbf{B}_{0}^{2}
$$

- relative orientation of CR gradient:
- solid lines : $\mathbf{B}_{0} \| \nabla n$
- dotted lines: $\mathbf{B}_{0} \perp \nabla n$
- diffusive regime at $T \Omega \gtrsim 100$
- enhanced dipole predicions:

$$
\left\langle C_{1}\right\rangle>C_{1} \text { for }\langle f\rangle
$$

- asymptotically limited by simulation noise:

$$
\mathcal{N} \simeq \frac{4 \pi}{N_{\mathrm{pix}}} 2 T K_{i j}^{s} \frac{\partial_{i} n \partial_{j} n}{n^{2}}
$$

[MA \& Mertsch'15]

Simulation vs. Data

Summary

- Observation of CR anisotropies at the level of one-per-mille is challenging.
- Reconstruction methods can introduce bias, sometimes not stated or corrected for.
- Dipole anisotropy can be understood in the context of standard diffusion theory:
- TeV-PeV dipole phase aligns with local ordered magnetic field.
- Amplitude variations as a result of local sources
- Plausible \& natural candidate: the Vela supernova remnant
- Observed CR data shows evidence of small-scale anisotropy.
- Influenced by heliosphere?
- Effect from non-uniform pitch-angle diffusion?
- Result of local magnetic turbulence?
\rightarrow see also talk by G. Giacinti
\checkmark Both observations allow to probe our local Galactic environment.
\rightarrow LHAASOs prospective energy range ($\mathrm{TeV}-\mathrm{EeV}$), energy resolution and event statistics will allow to decipher large- and small-scale features in presently uncharted territory.
\rightarrow Complements present and future Southern observatories (SWGO \& IceCube-Gen2) for extended sky coverage in joint anisotropy analyses.

Appendix

KASCADE-Grande Data

- KASCADE-Grande in Karlsruhe, Germany ($49.1^{\circ} \mathrm{N}, 8.4^{\circ} \mathrm{E}$)
- data collected between March 2004 and October 2012
- available via: kcdc.ikp.kit.edu
- three energy bins from $N_{\text {ch }}$ cuts:

data	$E_{\text {med }}{ }^{*}$	$N_{\text {ch-range }}$	$N_{\text {tot }}$
sidereal solar	-	$\geq 10^{5.2}$	$23,674,844$
bin 1	2.7 PeV	$\left[10^{5.2}, 10^{5.6}\right)$	$17,443,774$
bin 2	6.1 PeV	$\left[10^{5.6}, 10^{6.4}\right)$	$6,084,275$
bin 3	33 PeV	$\geq 10^{6.4}$	146,795

- Full anisotropy construction in Northern Hemisphere possible with max- \mathcal{L} method.
[MA'19]

Non-Uniform Pitch-Angle Diffusion

- stationary pitch-angle diffusion $(\mu \equiv \cos \theta)$:

$$
v \mu \frac{\partial}{\partial z}\langle f\rangle=\frac{\partial}{\partial \mu} D_{\mu \mu} \frac{\partial}{\partial \mu}\langle f\rangle
$$

- non-uniform diffusion:

$$
\frac{D_{\mu \mu}}{1-\mu^{2}} \neq \text { const }
$$

- non-uniform pitch-angle diffusion modifies the large-scale anisotropy aligned with \mathbf{B}_{0}
- small scale excess/deficits for enhanced diffusion towards $\mu \simeq \pm 1$
[Malkov, Diamond, Drury \& Sagdeev'10]
- modified large-scale features for enhanced diffusion at $\mu \simeq 0$
[Giacinti \& Kirk'17]
\rightarrow talk by G. Giacinti

[Giacinti \& Kirk'17]

Small-Scale Anisotropies from Heliosphere?

Small-Scale Anisotropies from Heliosphere?

- Solar potential affects cosmic ray flux (monopole) only at rigidity $\mathcal{R} \lesssim \mathrm{GV}$. [Gleeson \& Axford'68;Gleeson \& Urch'73]
- However, gyroradius of sub-TV cosmic rays smaller than the size of heliosphere:

$$
r_{g} \simeq 200\left(\frac{\mathcal{R}}{\mathrm{TV}}\right)\left(\frac{B}{\mu \mathrm{G}}\right)^{-1} \mathrm{AU}
$$

- various effects and studies:
* hard CR spectra via magnetic reconnection in the heliotail
* non-isotropic particle transport in the heliosheath
[Desiati \& Lazarian'11]
* heliospheric electric fields induced by plasma motion
* simulation via CR back-tracking in MHD simulation of heliosphere
[Zhang, Zuo \& Pogorelov'14; López-Barquero et al.'16]

Solar Potential

- dipole anisotropy induced by CR diffusion in solar wind:

$$
|\boldsymbol{\Phi}|=-\underbrace{\frac{\beta_{\odot}(r)}{3} \frac{\partial \phi}{\partial \ln p}}_{\text {Compton-Getting }}-\underbrace{\kappa_{\odot}(r, p) \frac{\partial \phi}{\partial r}}_{\text {diffuse dipole }}
$$

\rightarrow force-field approximation: $|\boldsymbol{\Phi}| \simeq 0$

- local solution related to distribution beyond heliosphere:

$$
\phi\left(r_{\oplus}, p\left(r_{\oplus}\right)\right)=\lim _{R \rightarrow \infty} \phi(R, p(R))
$$

- $p(r)$ solution of characteristic equation:

$$
\frac{\partial p}{\partial r}=\frac{\beta_{\odot}(r)}{3} \frac{p}{\kappa_{r}(r, p)}
$$

\rightarrow assume Bohm diffusion in heliosphere: $\kappa_{\odot}(r, p) \simeq \kappa_{0}(r)\left(\mathcal{R} / \mathcal{R}_{0}\right)$

$$
p\left(r_{\oplus}\right)=p(\infty)-|Z| e V_{\odot} \quad \text { with } \quad V_{\odot}=\underbrace{\frac{\mathcal{R}_{0}}{3} \int_{r_{\oplus}}^{\infty} \mathrm{d} r^{\prime} \frac{\beta_{\odot}\left(r^{\prime}\right)}{\kappa_{0}\left(r^{\prime}\right)}}_{\text {effective "solar potential" }} \lesssim 1 \mathrm{GV}
$$

Simulated Turbulence

- 3D-isotropic turbulence:

$$
\delta \mathbf{B}(\mathbf{x})=\sum_{n=1}^{N} A\left(k_{n}\right)\left(\mathbf{a}_{n} \cos \alpha_{n}+\mathbf{b}_{n} \sin \alpha_{n}\right) \cos \left(\mathbf{k}_{n} \mathbf{x}+\beta_{n}\right)
$$

- α_{n} and β_{n} are random phases in [0,2 π), unit vectors $\mathbf{a}_{n} \propto \mathbf{k}_{n} \times \mathbf{e}_{z}$ and $\mathbf{b}_{n} \propto \mathbf{k}_{n} \times \mathbf{a}_{n}$
- with amplitude

$$
A^{2}\left(k_{n}\right)=\frac{2 \sigma^{2} B_{0}^{2} G\left(k_{n}\right)}{\sum_{n=1}^{N} G\left(k_{n}\right)} \quad \text { with } \quad G\left(k_{n}\right)=4 \pi k_{n}^{2} \frac{k_{n} \Delta \ln k}{1+\left(k_{n} L_{c}\right)^{\gamma}}
$$

- Kolmogorov-type turbulence: $\gamma=11 / 3$
- $N=160$ wavevectors \mathbf{k}_{n} with $\left|\mathbf{k}_{n}\right|=k_{\min } e^{(n-1) \Delta \ln k}$ and $\Delta \ln k=\ln \left(k_{\max } / k_{\min }\right) / N$
- $\lambda_{\text {min }}=0.01 L_{c}$ and $\lambda_{\max }=100 L_{c}$
- rigidity: $r_{L}=0.1 L_{c}$
- turbulence level: $\sigma^{2}=\mathbf{B}_{0}^{2} /\left\langle\delta \mathbf{B}^{2}\right\rangle=1$

Systematic Uncertainty of CR Dipole

ARGO-YBJ
$\left(\Delta \delta_{\text {eq }}^{\star} / \delta^{\star}\right)_{68 \%}=0.20, \delta_{1}=-10^{\circ}, \delta_{2}=70^{\circ}$

IceCube

Tibet-AS γ

EAS-TOP

Compton-Getting Effect

- phase-space distribution is Lorentz-invariant

$$
f(\mathbf{p})=f^{\star}\left(\mathbf{p}^{\star}\right)
$$

- relative motion of observer $(\beta=\mathbf{v} / c)$ in plasma rest frame (\star) :

$$
\mathbf{p}^{\star}=\mathbf{p}+p \boldsymbol{\beta}+\mathcal{O}\left(\beta^{2}\right)
$$

- Taylor expansion:

$$
f(\mathbf{p}) \simeq f^{\star}(\mathbf{p})+\left(\mathbf{p}^{\star}-\mathbf{p}\right) \nabla_{\mathbf{p}^{\star}} f^{\star}(\mathbf{p})+\mathcal{O}\left(\beta^{2}\right) \simeq f^{\star}(\mathbf{p})+p \boldsymbol{\beta} \nabla_{\mathbf{p}^{\star}} f^{\star}(\mathbf{p})+\mathcal{O}\left(\beta^{2}\right)
$$

\rightarrow dipole term $\boldsymbol{\Phi}$ is not invariant:

$$
\phi=\phi^{\star} \quad \text { and } \quad \Phi=\Phi^{\star}+\frac{1}{3} \beta \frac{\partial \phi^{\star}}{\partial \ln p}
$$

- with $\phi \sim p^{-2} n_{\mathrm{CR}} \propto p^{-2-\Gamma_{\mathrm{CR}}}$:

$$
\delta=\delta^{\star}+\underbrace{\left(2+\Gamma_{\mathrm{CR}}\right) \beta}_{\text {Compton-Getting effect }}
$$

x What is the plasma rest-frame? LSR or ISM : v$\simeq 20 \mathrm{~km} / \mathrm{s}$

Local Sources

- Distribution of local cosmic ray sources (SNR) in position and time induces variation in the anisotropy.
[Erlykin \& Wolfendale'06; Blasi \& Amato'12] [Sveshnikova et al.'13; Pohl \& Eichler'13]
- variance of amplitude can be estimated as:
[Blasi \& Amato'12]

$$
\sigma_{A} \propto \frac{K(E)}{c H} \quad \rightarrow \quad \frac{\sigma_{A}}{A}=\mathrm{const}
$$

Local Magnetic Field

- strong regular magnetic fields in the local environment
\rightarrow diffusion tensor reduces to projector: [e.g. Mertsch \& Funk'14; Schwadron et al.'14; MA'17]

$$
K_{i j} \rightarrow \kappa_{\|} \widehat{B}_{i} \widehat{B}_{j}
$$

\rightarrow reduced dipole amplitude and alignment with magnetic field: $\delta \| \mathbf{B}$

Local Magnetic Field

- IBEX ribbon: enhanced emission of energetic neutral atoms (ENAs) observed with Interstellar Boundary EXplorer
[McComas et al.'09]
- interpreted as local magnetic field ($\lesssim 0.1 \mathrm{pc}$) drapping the heliosphere
- circle center defines field orientation (in Galactic coordinate system):
[Funsten et al.'13]

$$
\begin{gathered}
l \simeq 210.5^{\circ} \quad \& \quad b \simeq-57.1^{\circ} \\
\left(\Delta \theta \simeq 1.5^{\circ}\right)
\end{gathered}
$$

- consistent with starlight polarization by interstellar dust ($\lesssim 40 \mathrm{pc}$) [Frisch et al.'15]

$$
l \simeq 216.2^{\circ} \quad \& \quad b \simeq-49.0^{\circ}
$$

[McComas et al.'09]

Evolution Model

- Diffusion theory motivates that each $\left\langle C_{\ell}\right\rangle$ decays exponentially with an effective relaxation rate

$$
v_{\ell} \propto \mathbf{L}^{2} \propto \ell(\ell+1)
$$

- A linear $\left\langle C_{\ell}\right\rangle$ evolution equation with generation rates $v_{\ell \rightarrow \ell^{\prime}}$ requires:

$$
\partial_{t}\left\langle C_{\ell}\right\rangle=-v_{\ell}\left\langle C_{\ell}\right\rangle+\sum_{\ell^{\prime} \geq 0} v_{\ell^{\prime} \rightarrow \ell} \frac{2 \ell^{\prime}+1}{2 \ell+1}\left\langle C_{\ell^{\prime}}\right\rangle \quad \text { with } \quad v_{\ell}=\sum_{\ell^{\prime} \geq 0} v_{\ell \rightarrow \ell^{\prime}}
$$

- For $v_{\ell} \simeq v_{\ell \rightarrow \ell+1}$ and $\widetilde{C}_{\ell}=0$ for $l \geq 2$ this has the analytic solution:

$$
\left\langle C_{\ell}\right\rangle(T) \simeq \frac{3 \widetilde{C}_{1}}{2 \ell+1} \prod_{m=1}^{\ell-1} v_{m} \sum_{n} \prod_{p=1(\neq n)}^{\ell} \frac{e^{-T v_{n}}}{v_{p}-v_{n}}
$$

- For $v_{\ell} \simeq \ell(\ell+1) v$ we arrive at a finite asymptotic ratio:

$$
\lim _{T \rightarrow \infty} \frac{\left\langle C_{\ell}\right\rangle(T)}{\left\langle C_{1}\right\rangle(T)} \simeq \frac{18}{(2 \ell+1)(\ell+2)(\ell+1)}
$$

Another Example: Pierre Auger

Method can also be applied to high-energy data beyond the knee, e.g. Auger.

Another Example: Pierre Auger

$$
\text { pre-trial significance }\left(E>8 \mathrm{EeV}, 45^{\circ} \text { smoothing, } \sigma_{\max }=4.86\right)
$$

[MA'18]

Method can also be applied to high-energy data beyond the knee, e.g. Auger.

