Spectral features of PeVatrons (and detection prospects)

Silvia Celli "La Sapienza" University of Rome & INFN silvia.celli@roma1.infn.it

Multimessenger High Energy Astrophysics in the Era of LHAASO "La Sapienza" University of Rome 28th July 2020

OUTLINE

i) The **multi-messenger** framework for exploring **PeV cosmic accelerators**: cosmic rays, photons and neutrinos;

ii) Secondary production in **pp collisions** and spectral signatures of PeVatrons;

iii) **Sensitivity studies** for the next-generation instruments: **LHAASO, CTA & KM3NeT**.

The local CR spectrum

Energy density

- which are the CR sources?
- how can we identify them?

γ and v astronomy

Spectral shape

- which acceleration mechanism?
- what are the effects of the CR propagation?

Other observables

- Chemical composition
- Isotropy

Focus on the energy range up to the knee (~3 PeV) → PeVatrons

The local CR spectrum

Energy density

- which are the CR sources?
- how can we identify them?

— γ and v astronomy

Spectral shape

- which acceleration mechanism?
- what are the effects of the CR propagation?

Other observables

- Chemical composition
- Isotropy

Focus on the energy range up to the knee (~3 PeV) → PeVatrons

Candidate CR sources

Supernova remnants (SNRs)

- enough power to sustain the local CR flux
- ii) **shocks** as acceleration sites
- iii) maximum energy (Hillas criterion)

$$E_{\max} \simeq 1 \left(\frac{v_s}{10^3 \text{ km/s}} \right) \left(\frac{R_s}{\text{pc}} \right) \left(\frac{B}{\mu \text{G}} \right) \text{ TeV}$$

$$3 \quad 3 \quad 10$$

$$E_{max} \simeq 100 \text{ TeV}$$

Candidate CR sources

Massive stellar cluster

- i) enough power to sustain the local CR flux
- ii) **winds** as acceleration sites
- iii) maximum energy (Hillas criterion)

A proton PeVatron in the Galactic Center?

The search for CR sources

Photons and neutrinos as messengers of cosmic-ray accelerators

- leptonic production is realized at CR-electron collisions with matter (bremsstrahlung) and/or radiation fields (inverse Compton) and/or magnetic fields (synchrotron);
- hadronic production is realized at CR-proton collisions with matter ("pp") and/or radiation fields ("pγ"), mostly via meson production.

Proton-proton collisions

From protons to secondaries

Secondaries produced from spectrum of accelerated protons J_p (E_p) uniformly propagating within a target of density n:

$$\epsilon_{i}(E_{i}) = cn \int_{E_{i}}^{\infty} \sigma_{inel}(E_{p}) J_{p}(E_{p}) F_{i}\left(\frac{E_{i}}{E_{p}}, E_{p}\right) \frac{dE_{p}}{E_{p}}$$
Kelner, Abaronian & Bugayov, PBD 74 (2006) 3

• <u>Hp 1:</u> Proton spectrum is

$$J_{\rm p}(E_{\rm p}) = K_{\rm p} E_{\rm p}^{-\alpha_{\rm p}} \exp\left[-\left(\frac{E_{\rm p}}{E_{0,\rm p}}\right)^{\beta_{\rm p}}\right]$$

• <u>Hp 2</u>: Secondary electrons cooled in surrounding B field:

$$J_{\rm e}(E_{\rm e}) = \frac{\tau_{\rm sy}(E_{\rm e})}{E_{\rm e}} \int_{E_{\rm e}}^{\infty} \epsilon_{\rm e}(E) dE$$

Synchrotron radiation from secondary electrons

$$\tau_{\rm sy}(E_{\rm e}) = \frac{6\pi m_e^2 c^3}{\sigma_{\rm T} E_{\rm e} \beta_e^2 B_0^2} \simeq 1.3 \times 10^4 \left(\frac{E_{\rm e}}{\rm GeV}\right)^{-1} \left(\frac{B_0}{1 \text{ mG}}\right)^{-2} \text{ yr}$$

Warning: Cooling assumption is valid as long as $T_0 > \tau_{sy}(E_e)$

$$\epsilon_{\rm sy}(E) = \frac{\sqrt{3}}{2\pi} \frac{e^3 B_0}{m_{\rm e} c^2} \frac{1}{\hbar E} \int_0^\infty J_{\rm e}(E_{\rm e}) R\left(\frac{E}{E_{\rm c}(E_{\rm e})}\right) dE_{\rm e}$$

$$E_{\rm c} = 1.5\hbar e B_0 \frac{E_{\rm e}^2}{m_{\rm e}^3 c^5} \simeq 0.04 \left(\frac{B_0}{\rm mG}\right) \left(\frac{E_{\rm e}}{\rm TeV}\right)^2 \rm keV$$

$$R(x) = \frac{\alpha}{3\gamma_e^2} \left(1 + \frac{1}{x^{2/3}}\right) e^{-2x^{2/3}}$$

$$\lim_{l \to l} Derishev \& Aharonian, ApJ 887 (2019) 181$$

$$11 \qquad x = 9E/(8E_{\rm c})$$

A closer look to gamma rays and neutrinos

$$\alpha_{\rm p} = 2, \, \beta_{\rm p} = 1, \, E_{0,\rm p} = 1 \,\mathrm{PeV}$$

A closer look to synchrotron radiation

$$\alpha_{\rm p} = 2, \, \beta_{\rm p} = 1, \, E_{0,\rm p} = 1 \,\mathrm{PeV}, \, B_0 = 1 \,\mathrm{m}G$$

Parametrizing the cut-off shape

SENSITIVITY STUDIES FOR THE NEXT GENERATION INSTRUMENTS

The Cherenkov Telescope Array

Low energy section Energy threshold of some 10 GeV Medium energy section mCrab sensitivity in the 100 GeV – 10 TeV domain High energy section 10 km² area at multi-TeV energies

KM3NeT

- ARCA, multi-km³ array offshore Italy, mostly dedicated to astronomical studies (sources & diffuse flux);
- **ORCA**,115 strings deployed offshore France, devoted to studies of neutrino properties (mass ordering, exotic, etc.).

LHAASO

- A 1 km² array (KM2A) for electromagnetic particle detectors (EDs);
- An overlapping 1 km² array of water Cherenkov for muon detection (MDs);
- A surface water Cherenkov detector (WCDA);
- Wide-field-of-view air Cherenkov telescopes (WFCTA).

The following discussion is based on the LHAASO simulations performed in the past years

Cui et al., Astropart. 54 (2014) 86-92

LHAASO white paper, arXiv:1905.02773 (2019)

How to define instrument sensitivity?

SENSITIVITY = minimum detectable flux

- 1. Common approach for gamma-ray and neutrino astronomy;
- 2. **Differential sensitivities** allow for direct comparison of performances among different instruments and for spectroscopic analyses of source fluxes;
- 3. Instrument response function requirements:
 - i) angular+energy resolution;
 - ii) effective area;
 - iii) background rate.

20

Sensitivity studies

In each energy bin, these conditions have to be satisfied:
 Minimum number of signal events, N_s^{min};

- Minimum **significance** in bkg rejection, $\sigma_{\min} = N_s / \sqrt{N_b}$;
- Minimum **signal excess** over background uncertainty level, $N_{\rm s}/N_{\rm b} > X$;

LHAASO/CTA	KM3NeT
$N_s^{\min} \ge 10$	$N_s^{\min} \ge 1$
$\sigma_{\min} \ge 5$	$\sigma_{\min} \ge 3$
$N_s/N_b \ge 0.05$	$N_s/N_b \ge 0.75$

The energy bin is driven by the instrument with the largest energy resolution (here KM3NeT): $\sigma(\ln E) = 0.3$

 \rightarrow 3 bins per log decade

Next generation instrument performances

CTA South Array: 4 LSTs (23 m, FoV=4.5°), 24 MSTs (12m, FoV=7°), 72 SSTs (4m, FoV=9.5°)

KM3NeT Phase 3 (6 building blocks) upgoing tracks

LHAASO WCDA+KM2A

22

Ambrogi, Celli & Aharonian, Astropart. 100 (2018) 69

Next generation instrument performances

CTA South Array: 4 LSTs (23 m, FoV=4.5°), 24 MSTs (12m, FoV=7°), 72 SSTs (4m, FoV=9.5°)

KM3NeT Phase 3 (6 building blocks) upgoing tracks

LHAASO WCDA+KM2A

Next generation instrument performances

CTA South Array: 4 LSTs (23 m, FoV=4.5°), 24 MSTs (12m, FoV=7°), 72 SSTs (4m, FoV=9.5°)

KM3NeT Phase 3 (6 building blocks) upgoing tracks

LHAASO WCDA+KM2A

Ambrogi, Celli & Aharonian, Astropart. 100 (2018) 69

24

Extended sources

The bkg is very sensitive to the source extension, as

$N_b \propto R_{\rm ROI}^2$ $R_{\rm ROI} = \sqrt{\sigma_{\rm PSF}^2 + R_{\rm src}^2}$

LHAASO 1 yr

Conclusions

- Search strategy for **PeVatrons** in a multi-messenger and multiwavelength framework;
- Key discriminator for hadronic sources will be detection of
 - 100 TeV gamma rays,
 - high energy neutrinos,
 - synchrotron X rays from secondary electrons

—> interest in e.g. **massive clouds** illuminated by a nearby accelerator;

- Expected synergies between next generation instruments (LHAASO, CTA & KM3NeT);
- LHAASO will allow deep observations of sources beyond few tens of TeV —> several application to Galactic astrophysics (source halos, SNRs, etc.)