
Protopipe

Alice Donini

Protopipe

- Public pipeline prototype for CTA from DL0 to IRF
- Based on latest stable ctapipe release
- The pipeline provides scripts to:
 - Process simtelarray files and write DL1 or DL2 tables
 - Build regression or classification models with diagnostic plots
 - Estimate the best cutoffs which gives the minimal sensitivy reachable in a given amount of time
 - Produce instrument response functions (IRF), including sensitivity
- Still under development

Components from ctapipe

Calibration

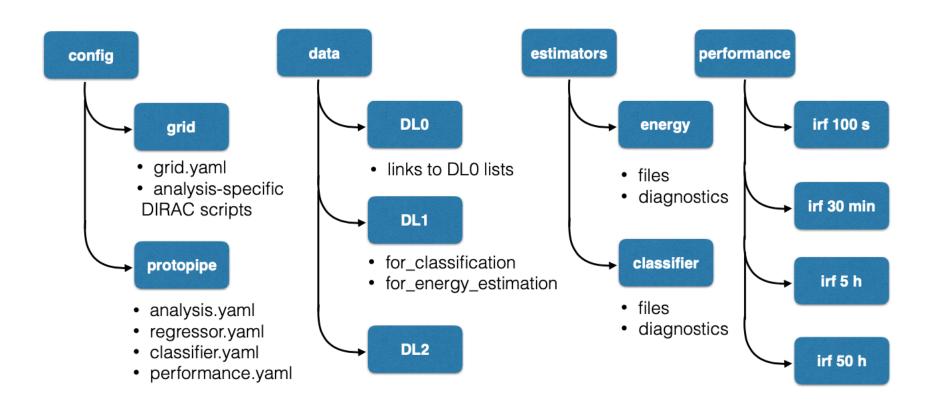
charge and pulse times extraction via ctapipe.image.extractors.
 TwoPassWindowSum

Image cleaning

- performed using ctapipe.image.cleaning. mars_cleaning_1st_pass
- the settings are user-dependent

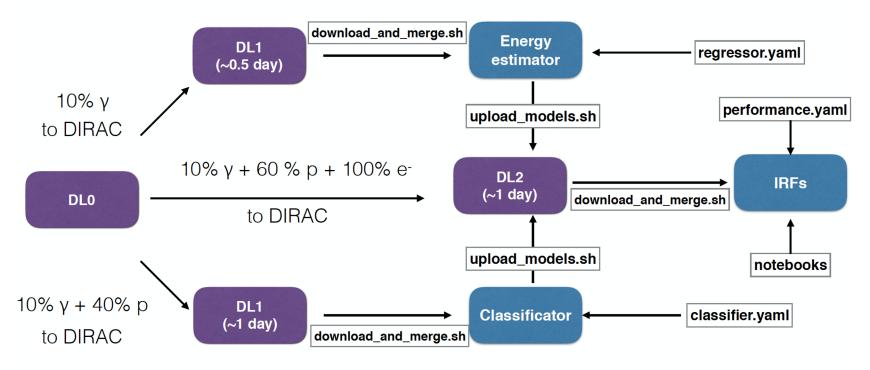
Parametrization

performed by ctapipe.image.hillas. hillas_parameters


Direction reconstruction

 performed via ctapipe.reco.HillasReconstructor with a minimum number of 2 surviving images per event.

Local folder


create an analysis parent folder with the auxiliary script create_dir_structure.py

Workflow

In the following: 'to DIRAC' requires 'grid.yaml' and 'analysis.yaml'

M. Peresano talk in Lugano: https://indico.cta-observatory.org/event/1995/

Energy estimator & Gamma hadron classifier

1. Data training: tables of image and stereo parameters that will be further used to build energy estimators

2. Model building: estimation models for particle energy and gamma/hadron classification

Regressor.yaml


```
General:
 model_type: 'regressor'
# [...] = your analysis local path
 # Please, refer to directory structure shown at Lugano
 data_dir: '[...]/data/DL1/for_energy_estimation'
                                                                              FeatureList:
 data_file: 'dl1_{}_gamma_merged.h5'
                                                                               - 'log10 charge'
 outdir: '[...]/estimators/energy_regressor'
                                                                               - 'log10 impact'
 cam_id_list: ['LSTCam', 'NectarCam']
                                                                               - 'width'
 table_name_template: 'feature_events_'
                                                                               'length'
                                                                               'h max'
Split:
train_fraction: 0.8
                                                                              SigFiducialCuts:
                                                                               - 'xi <= 0.5'
Method:
 name: 'AdaBoostRegressor'
                                                                              Diagnostic:
 target_name: 'mc_energy'
                                                                              # Energy binning (used for reco and true energy)
 tuned_parameters:
                                                                               energy:
  learning_rate: [0.3]
                                                                                nbins: 15
 n_estimators: [100]
                                                                                min: 0.0125
  base_estimator__max_depth: [null] # null is equivalent to None
                                                                                max: 125
 base_estimator__min_samples_split: [2]
 base_estimator__min_samples_leaf: [10]
 scoring: 'explained_variance'
 cv: 2
```

Classifier.yaml

use_proba: True # If not output is score

calibrate_output: False # If true calibrate probability


```
General:
model_type: 'classifier'
# [...] = your analysis local path
                                                                                                FeatureList:
# Please, refer to directory structure shown at Lugano
                                                                                                 - 'log10_reco_energy'
data_dir: '[...]/data/DL1/for_classification/'
                                                                                                 - 'width'
data_sig_file: 'dl1_tail_gamma_merged.h5'
data_bkg_file: 'dl1_tail_proton_merged.h5'
                                                                                                 - 'length'
cam_id_list: ['LSTCam', 'NectarCam']
                                                                                                 - 'skewness'
table_name_template: 'feature_events_' # Will be completed with cam_ids
                                                                                                 - 'kurtosis'
outdir: '[...]/estimators/gamma_hadron_classifier'
                                                                                                 'h max'
Split:
                                                                                                SigFiducialCuts:
train_fraction: 0.8
                                                                                                 - 'offset <= 0.5'</pre>
use same number of sig and bkg for training: False # Lowest statistics will drive the split
                                                                                                BkgFiducialCuts:
Method:
                                                                                                 - 'offset <= 1.'</pre>
name: 'RandomForestClassifier' # AdaBoostClassifier or RandomForestClassifier
target_name: 'label'
                                                                                                Diagnostic:
tuned_parameters:
                                                                                                 # Energy binning (used for reco and true energy)
 n estimators: [200]
                                                                                                 energy:
 max_depth: [10] # null for None
                                                                                                  nbins: 4
 min_samples_split: [10]
                                                                                                  min: 0.0125
 min_samples_leaf: [10]
                                                                                                  max: 125
 scoring: 'roc_auc'
cv: 2
```

DL2 production

produce tables of gamma-rays, hadrons and electrons with event informations

Perfomance.yaml

```
analysis:
 # Theta square cut optimisation (opti, fixed, r68)
 thsq opt:
 type: 'opti'
  value: 0.2 # In degree, necessary for type fixed
 # Normalisation between ON and OFF regions
 alpha: 0.2
 # Minimimal significance
 min_sigma: 5
 # Minimal number of gamma-ray-like
 min_excess: 10
 # Minimal fraction of background events for excess comparison
 bkg_syst: 0.05
 # Reco energy binning
 ereco_binning: # TeV
  emin: 0.012589254
  emax: 199.52623
  nbin: 21
 # Reco energy binning
 etrue_binning: # TeV
  emin: 0.019952623
  emax: 199.52623
  nbin: 42
```

```
particle_information:
gamma:
 n_events_per_file: 1000000 # 10**5 * 10
 e min: 0.003
 e max: 330
 gen_radius: 1400
 diff_cone: 0
 gen_gamma: 2
proton:
 n_events_per_file: 4000000 # 2 * 10**5 * 20
 e_min: 0.004
 e max: 600
 gen_radius: 1900
 diff_cone: 10
 gen_gamma: 2
 offset_cut: 1.
electron:
 n events per file: 2000000 # 10**5 * 20
 e min: 0.003
 e max: 330
 gen_radius: 1900
 diff_cone: 10
 gen_gamma: 2
 offset_cut: 1.
column_definition:
# Column name for true energy
mc_energy: 'mc_energy'
# Column name for reconstructed energy
reco_energy: 'reco_energy'
# Column name for classification output
classification_output:
 name: 'gammaness'
 range: [0, 1]
angular_distance_to_the_src: 'xi'
```

Optimized cuts and IRFs

estimate performance

```
usage: make_performance.py [-h] --config_file CONFIG_FILE --obs_time OBS_TIME [--wave | --tail]
```

- find the best cutoff in gammaness/score, to discriminate between signal and background, as well as the angular cut to obtain the best sensitivity for a given amount of observation time and a given template for the source of interest
- compute the instrument response functions, effective area, point spread function and energy resolution
- estimate the sensitivity

Latest updates

- Benchmark notebook for comparison between protopipe and CTA-MARS
 - DL1
 - calibration | benchmarks_DL1_calibration.ipynb
 - Image cleaning | benchmarks_DL1_image-cleaning.ipynb
 - DL2
 - Direction reconstruction | benchmarks_DL2_direction-reconstruction.ipynb
 - Energy estimation | benchmarks_DL2_energy-estimation.ipynb
 - Particle classification | benchmarks_DL2_particle_classification.ipynb
 - DL3
 - Point Spread Function | benchmarks_DL3_PSF.ipynb
 - Instrument Response Function and sensitivity | benchmarks DL3 IRFs and sensitivity.ipynb
- GRID support
 - interface to the GRID is needed
- New IRF builder tool
 - https://github.com/cta-observatory/pyirf
- New release based on ctapipe 0.8 soon