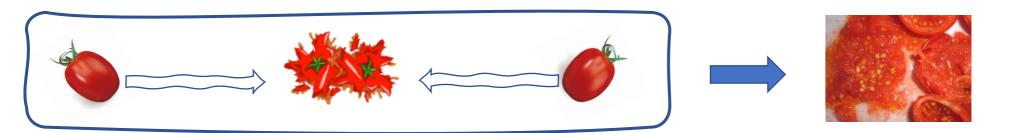


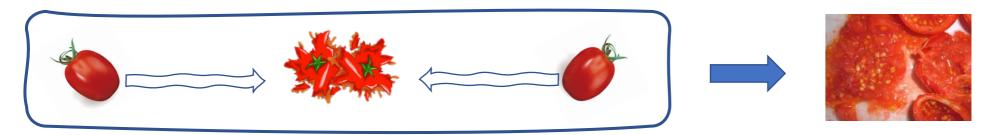
Physics and Innovations

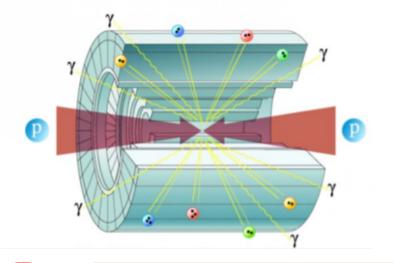
Particelle elementari ed interazioni fondamentali

Isabella Garzia Stage Estivi @ UNIFE 19 Giugno 2020



Dipartimento di Fisica e Scienze della Terra


Particelle in laboratorio



Particelle in laboratorio

Acceleratori di particelle:

Maggiore è l'energia del fascio di particelle e maggiore sarà la capacità di osservare oggetti sempre più piccoli!

Equivalenza massa-energia: E=mc²: l'energia che si libera nelle collisioni si converte nella massa di nuove particelle

http://pdg.lbl.gov/2019/tables/contents_tables.html

- Troppe particelle per essere fondamentali
- Inizia una paziente catalogazione
- Trovare delle regolarità che diano qualche indizio sulla struttura interna

M. Gell-Mann e G. Zweig: Modello a Quark: le particelle osservate sono costituite da quark (oggetti elementari)

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

$$I^G(J^{PC}) = 0^+(0^{++})$$

Mass m = (400-550) MeV Full width $\Gamma = (400-700)$ MeV

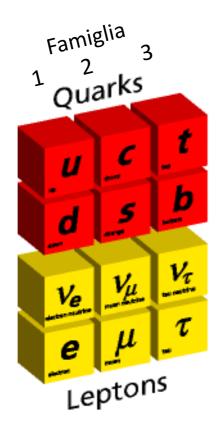
6(500) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
ππ	dominant	-
$\gamma\gamma$	seen	-

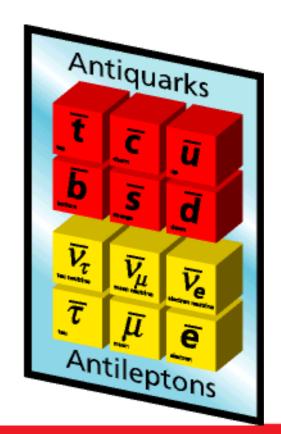
$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

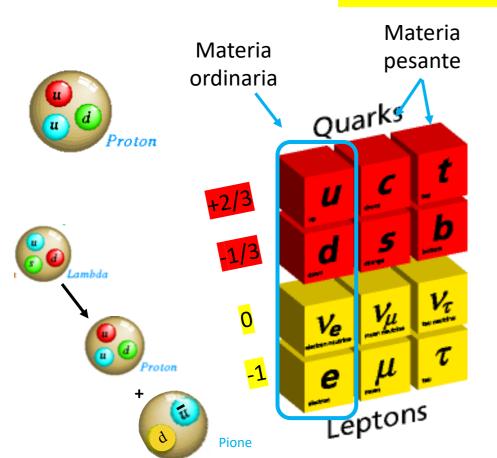
Mass $m = 775.26 \pm 0.25 \text{ MeV}$ Full width $\Gamma=149.1\pm0.8$ MeV $\Gamma_{ee} = 7.04 \pm 0.06 \text{ keV}$

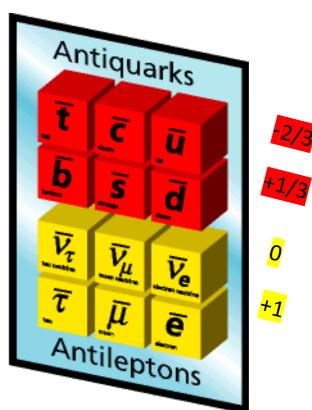
			Scale factor/	P					
p(770) DECAY MODES	Fraction (Γ_i/Γ)		Confidence level	(MeV/c)					
$\pi\pi$	~ 100	%		363					
ρ(770)± decays									
$\pi^{\pm}\gamma$	(4.5 ±0.5	$) \times 10^{-4}$	S=2.2	375					
$\pi^{\pm}\eta$	< 6	× 10 ⁻³	CL=84%	152					
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	< 2.0	× 10 ⁻³	CL=84%	254					
ρ(770) ⁰ decays									
$\pi^{+}\pi^{-}\gamma$	(9.9 ± 1.6)	$) \times 10^{-3}$		362					
$\pi^0 \gamma$	(6.0 ± 0.8)	$) \times 10^{-4}$		376					
$\eta \gamma$	(3.00±0.20	$) \times 10^{-4}$		194					
$\pi^{0}\pi^{0}\gamma$	(4.5 ±0.8) × 10 ⁻⁵		363					
$\mu^{+}\mu^{-}$	[i] (4.55±0.28	$) \times 10^{-5}$		373					
e+e-	[i] (4.72±0.05) × 10 ⁻⁵		388					
$\pi^+\pi^-\pi^0$	(1.01+0.54±	$0.34) \times 10^{-4}$		323					
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	(1.8 ±0.9	$) \times 10^{-5}$		251					
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.6 ±0.8) × 10 ⁻⁵		257					
$\pi^{0}e^{+}e^{-}$	< 1.2	× 10 ⁻⁵	CL=90%	376					

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

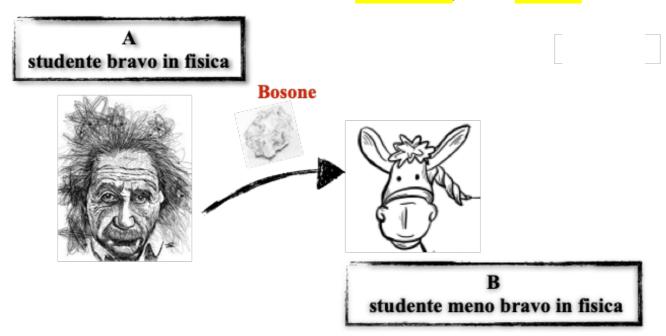

Mass $m = 782.65 \pm 0.12 \text{ MeV}$ (S = 1.9)


Created: 8/25/2014 17:06


Le particelle elementari



Le particelle elementari


Le interazioni fondamentali

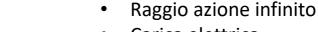
	Interazione	Teoria	Mediatori	Forza relativa	Agisce su:
	Forte	Cromodinamica quantistica (QCD)	Gluoni	1	q (qbar)
	Elettromagnetica	Elettrodinamica quantistica (QED)	Fotoni	~ 10 ⁻³	q (qbar), l [±]
	Debole	Teoria Elettrodebole	Bosoni W [±] e Z	~ 10 ⁻⁵	q (qbar), l±, ν
	Gravitazionale	Relatività generale	Gravitoni (?)	~ 10 ⁻³⁸	q (qbar), l [±]

L'interazione tra due particelle avviene mediante lo scambio di mediatori, detti bosoni

Mediatori

Gluoni

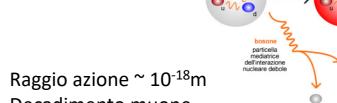
Fotoni


Bosoni W[±] e Z

Gravitoni (?)

Le interazioni fondamentali

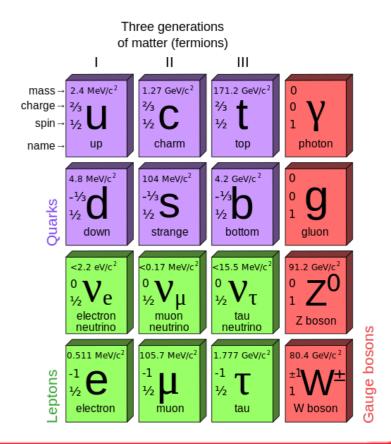
- La più antica, la meno nota
- Onde gravitazionali: 2015
- Gravitone?
- Trascurabile su scala atomica e sub-atomica



- Carica elettrica
- Equazioni di Maxwell: unificazione processi Elettrici e Magnetici
- Coesione atomica e molecolare

- Raggio azione ~ 10⁻¹⁵m
- Stabilità del nucleo
- Carica forte di colore (8 colori → 8 gluoni)
- sono "stabili" solo combinazioni neutre di colore

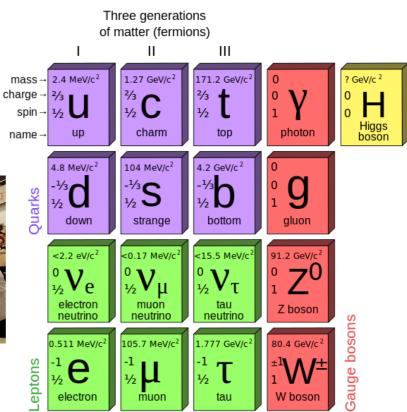
- Decadimento muone
- Fusione termonucleare nelle stelle
- Asimmetria materia-antimateria


protone (+)

II MODELLO STANDARD

- Proposto nel 1967 da Glashow, Salaam, Weinberg (contributi di Cabibbo, Kobaiashi, Maskawa, t'Hoft, ...)
- Descrive le proprietà della particelle osservate in termini di interazioni deboli, elettromagnetiche e forti
- Teoria elettrodebole

II MODELLO STANDARD


- Proposto nel 1967 da Glashow, Salaam, Weinberg (contributi di Cabibbo, Kobaiashi, Maskawa, t'Hoft, ...)
- Descrive le proprietà della particelle osservate in termini di interazioni deboli, elettromagnetiche e forti
- Teoria elettrodebole

BOSONE DI HIGGS

Dopo 50 anni di ricerche è stata annunciata la scoperta dagli esperimenti ATLAS e CMS

Ginevra, CERN 4 Luglio 2012

.... MA.... Tante le cose ancora da capire

- Bosone di Higgs
- Il MS non può essere una teoria ultima
 - Non spiega perché 3 famiglie
 - Masse molto diverse
 - Perché 4 interazioni?
 - e la gravità?
- Perché l'universo è fatto di materia? Che fine ha fatto l'antimateria?
- Materia Oscura: ~ 70% della massa dell'universo
- Energia Oscura: ~ 95% dell'energia dell'universo
- Inflazione dell'universo

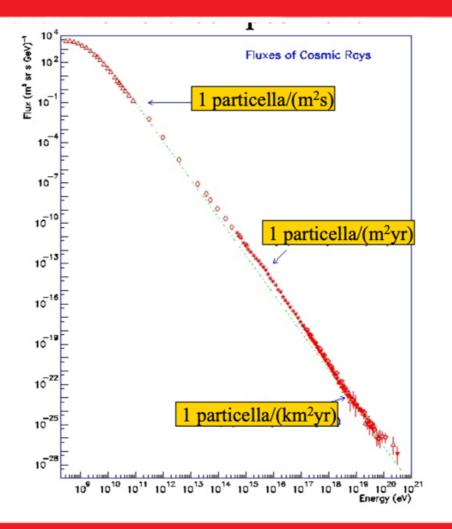
•

Raggi Cosmici: un prezioso laboratorio ancora oggi

- Testare e studiare nuovi rivelatori
- Raggi Cosmici con energie molto elevate (E>10¹⁹ eV)

Ma a volte sono anche di intralcio ...

Laboratori Nazionale del Gran Sasso 1400 m di profondità



Dipartimento di Fisica e Scienze della Terra

Il problema della massa: una proprietà apparente

Sperimentalmente, misuriamo l'accelerazione delle due palline e troviamo:

$$a_1=1$$
 m/s² e $a_2=0.5$ m/s² Calcolando la massa:

Thursday 112

Lo stesso esempio deve essere trasportato alle particelle elementari:

Elettrone

Campo di Higgs