Summary of a few physics topics using CNAO2020 and GSI2021 setups

Aafke Kraan (INFN Pisa), Giuseppe Battistoni (INFN Milano), Silvia Muraro (INFN Milano)

Introduction

- There are several questions to answer before going to GSI:
 - How many primaries do we expect to use for the next physics run?
 - How to divide them over the 2 targets? Should we collect the same amount of statistics for both targets? Not a priori clear, since targets have different densities and cross sections, and cross section on H is obtained through subtraction
- In order to optimize data taking at GSI with 2 targets, we have to keep in mind:
 - The cross section subtraction technique
 - The limited amount of time available
- In December 2020, we introduced the CNAO2020 design (see next).
- TODAY:
- In absence of dedicated GSI samples, summarize the most relevant conclusions we reached with this CNAO2020 setup
 - Issues about needed statistics to be collected (slides 3-8)
 - A-reconstruction by ToF and Calo measurements (slides 10-14)

Warning: limited to the case of ¹²C projectiles at 200 MeV/u, but expect similar conclusions for ¹⁶O beam

• Files just available! A few very preliminary numbers for ¹⁶O beam with GSI setup! (slides 15-21)

CNAO2020 setup: MC statistics used for evaluation

MC statistics used for evaluation

- 12C at 200 MeV/u on C
 - 10⁷ primaries
 - 284246 events on file
 - 5 mm thickness
 - rho=1.83 g/cm3)
- 12C at 200 MeV/u on C2H4
 - 10⁷ primaries
 - 5 mm thickness
 - rho=0.94 g/cm3

Geometry: campaign CNAO2020

- First part of presentation: focus on what we can do only with SC and TOF-Wall
- Second part: consider mass reconstruction

Cross section formulas

Reminder: cross section for production of fragments *i* on target (neglecting efficiency factors)

$$\sigma_{i,t} = \frac{Y_{i,t}}{N_p} \frac{A_t}{N_A \rho_t \delta_t} \quad (1)$$

- This CNAO data taking:
 - C beam on C target
 - C beam on C₂H₄ target

With:

 $\sigma_{i,t} = \text{cross section to produce fragment i on target t [cm²]}$ $Y_{i,t} = \text{Number of fragments of type i []}$ $A_t = \text{molecular mass of target [g mol⁻¹]}$ $N_p = \text{number of primary particles []}$ $N_A = \text{Avogadro's number [mol⁻¹]}$ $\rho_t = \text{density of target [g cm⁻³]}$ $\delta_t = \text{thickness of target [cm⁻¹]}$

$$\sigma_{i,C} = \frac{Y_{i,C}}{N_p} \frac{A_C}{N_A \rho_C \delta_C} \text{ (1a)} \qquad \sigma_{i,C_2H_4} = \frac{Y_{i,C_2H_4}}{N_p} \frac{A_{C_2H_4}}{N_A \rho_{C_2H_4} \delta_{C_2H_4}} \text{ (1b)} \qquad \sigma_{i,H} = \frac{1}{4} \left(\sigma_{i,C_2H_4} - 2\sigma_{i,C} \right) \text{ (2)}$$

 What we did: derived formulas for cross section errors and relative errors analytically to have a-priori estimates, and then verified them with MC simulations with N_p=10⁷ primaries

Fragment production from 12C @200 MeV/u: yields

Z of fragment i	Y _{i,C}	Y_{i,C_2H_4}	$\frac{Y_{i,C}}{Y_{i,C_2H_4}}$
1	334288	207099	1.61
2	274852	197885	1.39
3	28158	22329	1.26
4	15405	13240	1.16
5	32617	26699	1.22
6	26183	26396	0.99

Starting with N_p=10⁷, how many have inelastic interactions?
From MC simulations:
Carbon: about 6%

• Ethylene: about 4%

- Not shown, but these yields from MC are roughly in accordance with what we derived analytically
- More fragments expected for carbon target than for polyethylene target (remember A and rho!!)
- Ratio between C yield and C₂H₄ yield varies with Z

Fragment production from 12C @200 MeV/u: relative errors

• If N_p for the C_2H_4 target = N_p for the C target, we obtain:

 $\frac{\Delta \sigma_{i,H}}{\sigma_{i,H}} \sim \frac{1.08}{0.33} \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}} \sim 3.3 \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}}$

- Not shown, but these numbers from MC are in accordance with what we derived analytically
- Relative error on H target is large
- It varies with Z

Z of fragment i	$rac{\Delta \sigma_{i,H}}{\sigma_{i,H}}$	$\frac{\Delta \boldsymbol{\sigma}_{i,C}}{\boldsymbol{\sigma}_{i,C}}$	$\frac{\Delta \sigma_{i,H}}{\sigma_{i,H}} / \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}}$				
1	0.87	0.17	5.0				
2	0.65	0.18	3.4				
3	1.68	0.60	2.8				
4	1.97	0.81	2.4				
5	1.47	0.55	2.7				
6	1.19	0.62	1.9				

• If doubling N_p for the C₂H₄ target w.r.t. C target, we obtain:
$$\frac{\Delta \sigma_{i,H}}{\sigma_{i,H}} \sim 2.5 \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}}$$

• If 4 times N_p for the C₂H₄ target we obtain: $\frac{\Delta \sigma_{i,H}}{\sigma_{i,H}} \sim 2.1 \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}}$

Decrease of statistical error is slow... probably doubling N_p for the C₂H₄ target w.r.t. C target is enough

Fragment production from 12C @200 MeV/u: cross section

So, let's derive the cross sections for the case where we have:

- C target: 5x10⁶ primaries
- C₂H₄ target: 10⁷ primaries

- C_2H_4 cross section is largest.
- Still acceptable result with 5x10⁶ primaries for C target, and 10⁷ primaries for C₂H₄ target
- Errors: heavier fragments have large errors

What numbers do we expect at GSI?

- Numbers were CNAO202 setup. Assume that at GSI, similar numbers apply (see slides 14-21)
- Assume that we take data at low intensity: about 1000 primaries/s in the spill \rightarrow given that the duty cycle is • 50%, about 500 primaries/s
- Firing 10⁷ primaries would take 10⁷/500 s, i.e., 5.5 hours... (shift is about 8 hours)
- As said before, run with C₂H₄ target with double number of primaries

N_p for C target	N_p for C_2H_4 target	Total estimated run time
107	2 x 10 ⁷	5.5+11=16.5 hours: long
5x10 ⁶	107	2.7+5.5~8.2 ≳ 8 hours: ok?
4x10 ⁶	8x10 ⁶	2.2+4.4~6.6 < 8 hours: ok

- Summarizing: ٠

 - we need more primaries for the C₂H₄ target than for the C target Given the slow decrease of the error on $\frac{\Delta \sigma_{i,H}}{\sigma_{i,H}}$, probably for a given energy we can point at n*10⁶ primaries of ٠ C and $2n*10^6$ for C₂H₄, preferably with n not too far away from 5.
 - Largest relative errors on cross sections for larger Z (say $Z \ge 3$)

Isotope Identification and A reconstruction: overview See physics meeting May 5

Goal is to do a combined TW+Calorimeter analysis in order to extract

- A reconstructed vs A true: how good are we in detecting a given fragment with true mass A?
- Z reconstructed vs Z true: how good are we in detecting a given fragment with true charge Z?

Analysis MC local reco

- Determine energy and TOF in front and rear bars starting **from TWpoints.**
- Select only positions (a crossing between a front and a rear bar) that are associated with bars with:
 - >=1 MeV in Front bar: fired bar
 - >= 1 MeV in rear bar: fired bar
- Verify for that position the front-rear consistency:

 $\frac{|E_F - E_R|}{(E_F + E_R)/2} < 0.05$

- If position passes, call it 'fired position'
- For 'good' positions (calorimeter behind), evaluate associated calorimeter deposit (see next)
- Store a global event reconstructed value for A and Z for that position
 - Makes only sense when 1 fragment passes per position (see slice 10)

See physics meeting May 5

Enable TWZmcnEnable TWnoPUnEnable TWZmatchy

	_	

Z: use Z from TWPoint (a true Z associated to the point)
A: reconstruct it from:

 $\frac{E_{calo}}{931.5(\gamma-1)}$

MC reco: Delta E vs TOF for selected positions

See physics meeting May 5

For each position in each event, evaluate for the fired positions ΔE_{SCN} vs TOF MC reco: ΔE_{SCN} vs TOF in centre TW MC reco: ΔE_{SCN} vs TOF in whole TW 120 100 100 80 60 20

To be investigated and redone with more recent TOFpoints code

Analysis MC local reco: calorimeter deposits

See physics meeting May 5

- Starting from Clusters, in each event fill 9 crystals (threshold 10 MeV)
- Checked for a fired TW position which crystals can be associated to it (neighbours)
- Examples below
- Sum the energy of the associated crystals in each event
- Threshold 10 MeV (tested various thresholds)
- Then we have for a given 'good' TW position:
 - the gamma (from beta)
 - the calorimeter energy

$$A = \frac{E_{calo}}{931.5(\gamma - 1)}$$

Local Reco: TW+Calorimeter

A (MC local reco)

See physics meeting May 5

For the moment, positions that are associated with double hits in a bar are excluded

- To be investigated: the reconstructed A. is somewhat low (see next)
- Example A_{MCtrue} =11: relative efficiency to be riconstructed correctly is 80%

Local Reco: TW+Calorimeter

Example (preliminary!) of MC reconstructed A for Z=6

GSI 2021: influence of target: C vs C_2H_4

Charged secondaries produced in target arriving at TW

Consider 1 cm thickness target for C_2H_4 ?

 $\frac{Y_{i,C}}{Y_{i,C_2H_4}}$

Remember: C_2H_4 has larger σ , but lower ρ and larger A

¹⁶O @200 MeV/u – C_2H_4 target – 10⁶ primaries

GSI 2021: influence of beam energy: 200 vs 400 MeV/u oxygen

- Light fragments: Nfrag_{TW}@400 MeV > Nfrag_{TW}@200 MeV (larger boost at 400 MeV)
- Heavy fragments: Nfrag_{TW}@400 MeV < Nfrag_{TW}@200 MeV (were already produced in center)

GSI 2021: influence of beam energy: 200 vs 400 MeV/u oxygen

- Light fragments: Nfrag_{TW}@400 MeV > Nfrag_{TW}@200 MeV
- Heavy fragments: Nfrag_{TW}@400 MeV ~> Nfrag_{TW}@200 MeV
- Why different from C target? Presence of H atoms...

Charged secondaries produced in target arriving at TW vs CALO

¹⁶O @200 MeV/u – C target – 10⁶ primaries

- Light fragments: we mostly loose them
- Heavy fragments: we mostly see them

Charged secondaries produced in target arriving at TW vs CALO

• Light fragments: we mostly loose them: hardly any light fragments in TW pass by central calo module

Heavy fragments: we mostly see them!

Example: Z=8 in Calo, we get 80% of what's in TW, Z=7 we get 70%, ... Z=2 we get 10%, Z=1 we get 5%

Charged secondaries produced in target arriving at TW vs CALO

Note that:

 $\sigma_{400 \text{ MeV}} < \sigma_{200 \text{ MeV}}$

¹⁶O @400 MeV/u – C target – 10⁶ primaries

Z vs A lsotopes arriving to Calorimeter

- Light fragments: we mostly loose them
- Heavy fragments: we mostly see them
- Example: Z=8 we get about 100% in Calo of what we get in TW!!!!

Charged secondaries produced in target arriving at TW vs CALO

Z vs A lsotopes arriving to TofWall

¹⁶O @400 MeV/u – C2H4 target – 10⁶ primaries

- Light fragments: we mostly loose them
- Heavy fragments: we mostly see them
- Example: Z=8 we get 93% in Calo with respect to TW

Conclusions

- 1. Conclusion from CNAO2020 studies: For measurements, we can point at n^*10^6 primaries of C and $2n^*10^6$ for C_2H_4 , preferably with n not too far away from 5.
- 2. Consider possibility to use target of 1 cm for C_2H_4
- 3. We had a first look at A reconstruction with 9 calorimeter crystals
 - CNAO2020 setup, 200 MeV/u ¹²C on C target
- 4. GSI preliminary numbers: we believe that "CNAO2020" numbers in 1) still hold
- 5. More detailed discussion in next physics meeting
- 6. In central calo model can study A reconstruction of heavy fragmenst: Z=8, 7, 6 ...
- 7. To be done:
 - Analyze GSI samples available since a few days
 - Upgrade to newgeom branch
 - Decide strategy on how to determine A and Z cross feed and efficiency in more detail

See also

https://agenda.infn.it/event/25078/contributions/127067/attachments/81143/106200/2021_April_FOOTExpe ctedMassResolution_v1.pdf

https://agenda.infn.it/event/24595/contributions/126307/attachments/77646/100112/20201210_FOOTCollab orationMeeting_v1.pdf

THANKS

Backup Slides

Software used

- Ran DecodeMC on CNAO2020 production: ¹²C on C target 10⁷ primaries
- Master branch (March 30 2021)
- Macro developed starting from Giuseppe's/Yun's ReadShoe.C and Lorenzo's PrintCalClusMcInfo.C (and shoe tutorial studied)
 - MC truth
 - TAMCntuhits (using shoe-tree branches of TW, Calo, STC)
 - mcNtuEve
 - MC local reco
 - TATWntuPoint for TW
 - TACAntuCluster for calorimeter

Reminder: cross sections of heavy ion beams (C, O) on tissue like targets (H, C, O)

• Reminder: cross section for production of fragments *i* on target (neglecting efficiency factors)

$$\sigma_{i,t} = \frac{Y_{i,t}}{N_p} \frac{A_t}{N_A \rho_t \delta_t} \quad (1)$$

- This CNAO data taking:
 - C beam on C target
 - C beam on C₂H₄ target

With:

$$\sigma_{i,t}$$
 = cross section to produce fragment i on target t [cm²]
 $Y_{i,t}$ = Number of fragments of type i []
 A_t = molecular mass of target [g mol⁻¹]
 N_p = number of primary particles []
 N_A = Avogadro's number [mol⁻¹]
 ρ_t = density of target [g cm⁻³]
 δ_t = thickness of target [cm⁻¹]

$$\sigma_{i,C} = \frac{Y_{i,C}}{N_p} \frac{A_C}{N_A \rho_C \delta_C} \text{ (1a)} \qquad \sigma_{i,C_2H_4} = \frac{Y_{i,C_2H_4}}{N_p} \frac{A_{C_2H_4}}{N_A \rho_{C_2H_4} \delta_{C_2H_4}} \text{ (1b)} \qquad \sigma_{i,H} = \frac{1}{4} \left(\sigma_{i,C_2H_4} - 2\sigma_{i,C} \right) \text{ (2)}$$

- For the targets inherited from GSI:
 - $\delta_C = \delta_{C_2H_4} = 5 \text{ mm}, \quad \rho_C = 1.83 \text{ g/cm}^3, \quad \rho_{C_2H_4} = 0.94 \text{ g/cm}^3, \quad A_C \sim 12 \text{ g mol}^{-1}, \quad A_{C_2H_4} \sim 28 \text{ g mol}^{-1}$

Reminder: statistical errors on cross section for production of fragment i on target (neglecting efficiency

factors). Essentially they are only determined by the yield of the detected fragments

$$\Delta \sigma_{i,t} = \frac{\sqrt{Y_{i,t}}}{N_p} \frac{A_t}{N_A \rho_t \delta_t}$$
 (3)

- This CNAO data taking:
 - C beam on C target
 - C beam on C₂H₄ target

With:

$$\sigma_{i,t}$$
 = cross section to produce fragment i on target t [cm²]
 $Y_{i,t}$ = Number of fragments of type i []
 A_t = molecular mass of target [g mol⁻¹]
 N_p = number of primary particles []
 N_A = Avogado's number [mol⁻¹]
 ρ_t = density of target [g cm⁻³]
 δ_t = thickness of target [cm⁻¹]

$$\Delta \sigma_{i,C} = \frac{\sqrt{Y_{i,C}}}{N_p} \frac{A_C}{N_A \rho_C \delta_C} \text{(3a)} \quad \Delta \sigma_{i,C_2H_4} = \frac{\sqrt{Y_{i,C_2H_4}}}{N_p} \frac{A_{C_2H_4}}{N_A \rho_{C_2H_4} \delta_{C_2H_4}} \text{(3b)} \quad \Delta \sigma_{i,H} = \frac{1}{4} \sqrt{(\Delta \sigma_{i,C_2H_4})^2 + 4(\Delta \sigma_{i,C})^2} \text{(4)}$$

• For the targets inherited from GSI:

•
$$\delta_C = \delta_{C_2H_4} = 5 \text{ mm}, \quad \rho_C = 1.83 \text{ g/cm}^3, \quad \rho_{C_2H_4} = 0.94 \text{ g/cm}^3, \quad A_C \sim 12 \text{ g mol}^{-1}, \quad A_{C_2H_4} \sim 28 \text{ g mol}^{-1}$$

Note that targets have the same thickness \rightarrow for the same nr. of primaries, the measurement with the C₂H₄ target, having a density smaller by a factor of ~2 w.r.t. the carbon target, will have a larger relative statistical error

What errors do we expect?

- What can we expect for $\Delta \sigma_{i,H}$, $\Delta \sigma_{i,C}$ and $\Delta \sigma_{i,C_2H_4}$ if the same number of primaries is used on both targets? (efficiencies same)
- Using 200 MeV/u carbon ions, assuming similar cross sections, we estimate for fragment type *i* for our targets:

$$\frac{Y_{i,C}}{Y_{i,C_{2}H_{4}}} = \frac{\sigma_{i,C}}{\sigma_{i,C_{2}H_{4}}} \frac{\rho_{C}}{\rho_{C_{2}H_{4}}} \frac{A_{C_{2}H_{4}}}{A_{C}}$$
(5)

$$\frac{Y_{i,C}}{Y_{i,C_{2}H_{4}}} \approx 4.54 \frac{\sigma_{i,C}}{\sigma_{i,C_{2}H_{4}}} \approx 1.4$$
(7)

$$\Delta \sigma_{i,H} = \frac{1}{4} \sqrt{(\Delta \sigma_{i,C_{2}H_{4}})^{2} + 4(\Delta \sigma_{i,C})^{2}}$$
(9)

$$= \frac{1}{4} \sqrt{(3.8\Delta \sigma_{i,C})^{2} + 4\Delta \sigma_{i,C}^{2}}$$
(9)

$$\approx \frac{1}{4} \sqrt{18.8} \Delta \sigma_{i,C} \Delta \sigma_{i,C} \approx 1.08 \Delta \sigma_{i,C}$$
(9)

$$\Delta \sigma_{i,C} = \sqrt{\frac{Y_{i,C_{2}H_{4}}}{Y_{i,C}}} \frac{\rho_{C} A_{C,H_{4}}}{\rho_{C_{2}H_{4}}A_{C}} \approx \sqrt{\frac{1}{1.4}} 4.54 \approx 3.84$$
(8)

What errors do we expect?

• But actually, what matters are the relative errors...

$$\frac{\Delta \sigma_{i,H}}{\sigma_{i,H}} \qquad \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}}$$

$$\sigma_{i,H} = \frac{1}{4} \left(\sigma_{i,C_{2}H_{4}} - 2\sigma_{i,C} \right) = \frac{1}{4} \sigma_{i,C} \left(\frac{\sigma_{i,C_{2}H_{4}}}{\sigma_{i,C}} - 2 \right) \sim \frac{1}{4} \sigma_{i,C} \left(\frac{1}{0.3} - 2 \right) \sim 0.33 \sigma_{i,C}$$

$$\Delta \sigma_{i,H} \approx 1.08 \Delta \sigma_{i,C} \tag{9}$$

$$\frac{\Delta \sigma_{i,H}}{\sigma_{i,H}} \sim \frac{1.08}{0.33} \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}} \sim 3.3 \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}} \qquad (10)$$

For the same nr of primaries in both target runs, relative cross section error on H is > 3 times larger than that on C (the most accurate case)...

 Does it depend on i? (type of fragment?) → see slide 9 and further (MC)
 29

What if we double the statistics of the C_2H_4 run?

• If doubling N_p for the C_2H_4 target w.r.t. C target, we obtain:

• In the case of $d\sigma/dE$ and $d\sigma/d\Omega$, the correct numerical factor of course depends on the actual value of $\frac{\sigma_{i,C_2H_4}}{\sigma_{i,C}}$ (or equivalently $\frac{Y_{i,C_2H_4}}{Y_{i,C}}$) in each ΔE , $\Delta \Omega$ bin for each secondary fragment type of interest, *i*

A factor 2 more for the C_2H_4 target than for C target the is the 'minimum' we should do (assuming same target thicknesses of 5 mm for now. We can also increase them if needed...)

Let's now try to confirm some of these considerations with MC and check behaviour of different fragments FOOT Collaboration meeting 9/12/2020

- Determine energy and TOF in front and rear bars (TAMCntuHit *twMChits)
- Select only positions (a crossing between a front and a rear bar) that are associated with bars with:
 - >=1 MeV in Front bar: fired bar
 - >= 1 MeV in rear bar: fired bar
- Verify for that position the front-rear consistency:

$$\frac{|E_F - E_R|}{(E_F + E_R)/2} < 0.05$$

- If position passes, call it 'fired position' -
- For a selected position, find the corresponding hit and evaluate true Z and A
 - Makes only sense when 1 fragment passes per position
- If a fired position is one of the **9** central positions, call it 'good'

Central bars (8,9,10): MC truth: N_{bars} in front

Whole TW: MC truth N_{bars} in rear

• Even when considering only central bars, still often multiple bars fired

Central (8, 9, 10):MC truth: N_{bars} in rear

Example: Event has N_{pos}=1, since energy deposit in F and R is typically similar

Such events are mostly (but not fully, see next slide) excluded, since F and R deposits typically don't match

Events like this would typically result in N_{pos}=2, given that two different fragments leave different energy deposit

 For each event, evaluate how many of the positions are 'fired positions' (strongly correlated with nr of fragments passing)

- About 65% of all events fire at least 1 position in the TW
- About 15% of all events fire at least 2 positions in the TW
- About 20% of all events fire at least 1 good position (with calorimeter crystal behind)

- In centre positions, dominated by heavy fragments (no surprise)
- Positions associated to bars with more than 1 hit can disturb Z identification. But only at most 6%.

Excluding such events with bars with double-hits, distribution is clean

column	•0 1	2	3	4	5	6	7	8	9	10	11	12							19		
row 0 1	0 1																		19		
2 3	20								Y	(fı		m	TA	۸ľv	1C	ev	/e1	Fra	ick	()	
4 5		-	-		_				1	-	-						_	-	-		
6																					(0,0) in front
8			x						1												bar 9 and
			۸ (fr	or	n	ΤA	M	С	18 e\	9 /e	T ra	ck	c)							r	rear bar 9
		-																_			
19	380																		399		

pos 168	169	170
Crys 4	Crys 3	Crys 5
188	189	190
Crys 1	Crys 0	Crys 2
208	209	210
Crys 7	Crys 6	Crys 8

Mass isotopes for carbon target

Mass isotopes for C₂H₄ target

FOOT Collaboration meeting 9/12/2020

