He recoils in CYGNO
10 L prototype

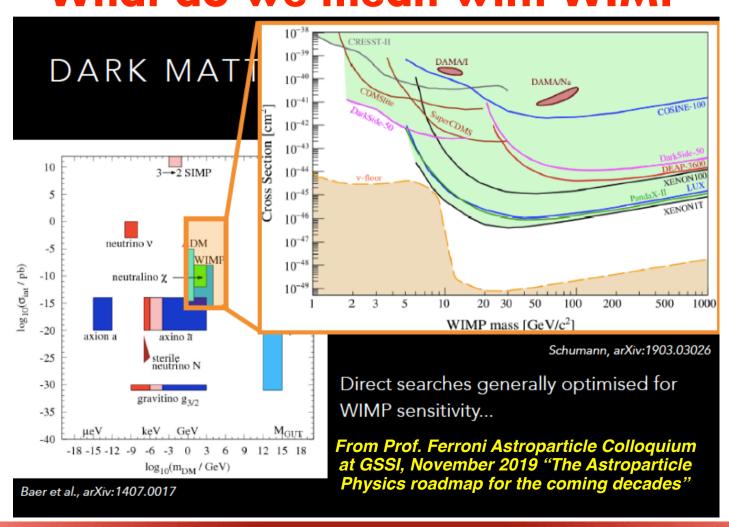
CYGNO/INITIUM: physics cases & measurements

E. Baracchini, a,b L. Benussi, c S. Bianco, c C. Capoccia, c M. Caponero, c,d G. Cavoto, e,f A. Cortez, a,b I. A. Costa, g E. Di Marco, e G. D'Imperio, e G. Dho, a,b F. Iacoangeli, e G. Maccarrone, c M. Marafini, e,h G. Mazzitelli, c A. Messina, e,f R. A. Nobrega, g A. Orlandi, c E. Paoletti, c L. Passamonti, c F. Petrucci, i,j D. Piccolo, c D. Pierluigi, c D. Pinci, e,1 F. Renga, e F. Rosatelli, c A. Russo, c G. Saviano, c , k and S. Tomassini c

Part of this project has been funded by the European Union's Horizon 2020 research and innovation programme under the ERC Consolidator Grant Agreement No 818744

Physics cases & foreseen measurement

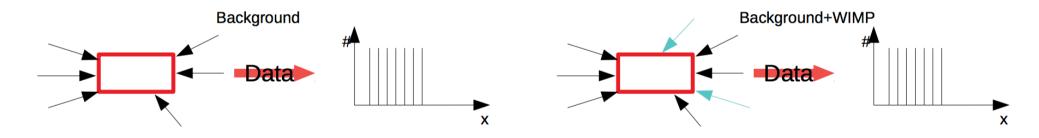
- § Classical WIMP searches: 3 σ sensitivity in frequentist approach with and without presence of background
- Solar neutrino measurement with elastic scattering on electrons
- LIME underground LNGS neutron flux measurement



S CYGNO WIMP searches:

3 sigma sensitivity

What do we mean with WIMP

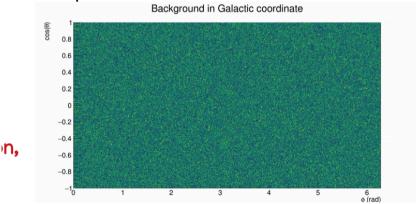

How to

• The MC procedure consists in the repetition of fake experiments

• Experiments with pure background or background +WIMP

ullet The extended profile likelihood ratio method will be used to find the 3 σ significance

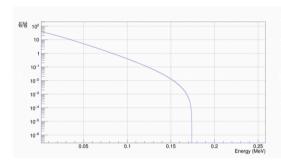
Background & signal modelling

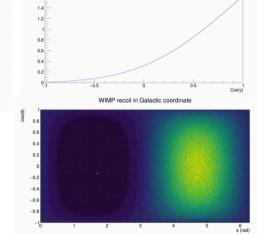

Background

Energy

- Unknown shape (similar to an exponential)
- Less discriminative power than angle

2D angle


- Unknown shape
- At first order, in Galactic coordinates most of the background should dilute and look isotropic


Being easier to model and more powerful in discrimination, the angular information will be used

Signal from WIMP theory

Angular spectrum

Probability of hitting an element

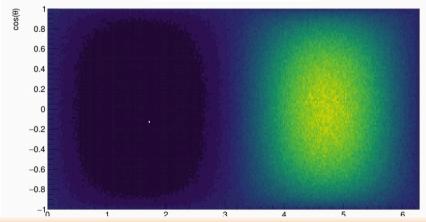
Important during simulation to extract the element hit by the DM particle **G. Dho**

Angular spectrum in galactic coordinates

• To have the angular spectrum in the lab RF, the integration must be modified to include the angle between recoil and Sun direction. I adapted the calculation from DOI:10.1103/PhysRevD.66.103513

$$\frac{dR}{dE_{R}d\cos y} = \left(e^{-\frac{(v_{min}-v_{E}\cos y)^{2}}{v_{0}^{2}}} - e^{-\frac{v_{esc}^{2}}{v_{0}^{2}}}\right)\Theta\left(\cos y - \frac{v_{min}-v_{esc}}{v_{E}}\right)$$

And rearranging


$$\frac{dR}{d\cos\gamma} = \int_{E_{thr}}^{\frac{1}{2}m_{\chi}r(\nu_{E}\cos\gamma+\nu_{esc})^{2}} \left(e^{-\frac{(\nu_{min}-\nu_{E}\cos\gamma)^{2}}{\nu_{0}^{2}}} - e^{-\frac{\nu_{esc}^{2}}{\nu_{0}^{2}}}\right) dE_{R}$$

If low integral extreme is less than high integral extreme

According to the angle, not all the energies can contribute, with v_{esc} different than 0

• Assuming the detector in the centre of the Sun, the spectra can be transformed in the Galactic

coordinates

Fake experiments for signal & background

- The experiment data will consist in a 2D angular histogram with the values obtained from the simulated events
- Background experiment

Expecting μ_{h} background events Extract x events from Poisson(x, μ_{h})

For each event the 2D coordinates are extracted from background distribution

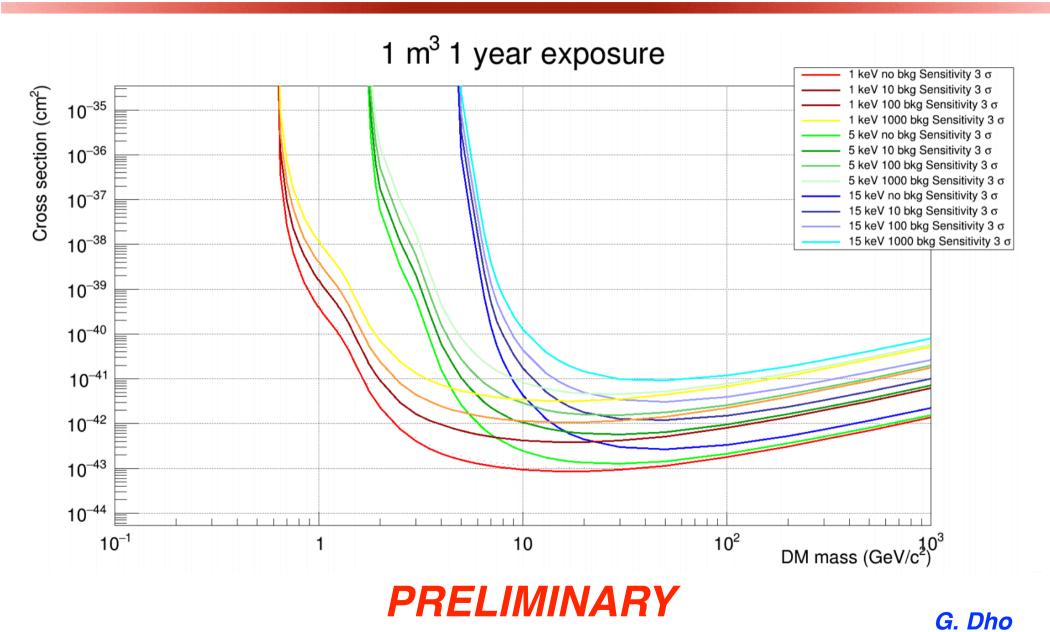
Procedure for background+WIMP experiment

Same for background

Extract y events from Poisson(y, μ_s , m_x), with μ_s the expected WIMP events

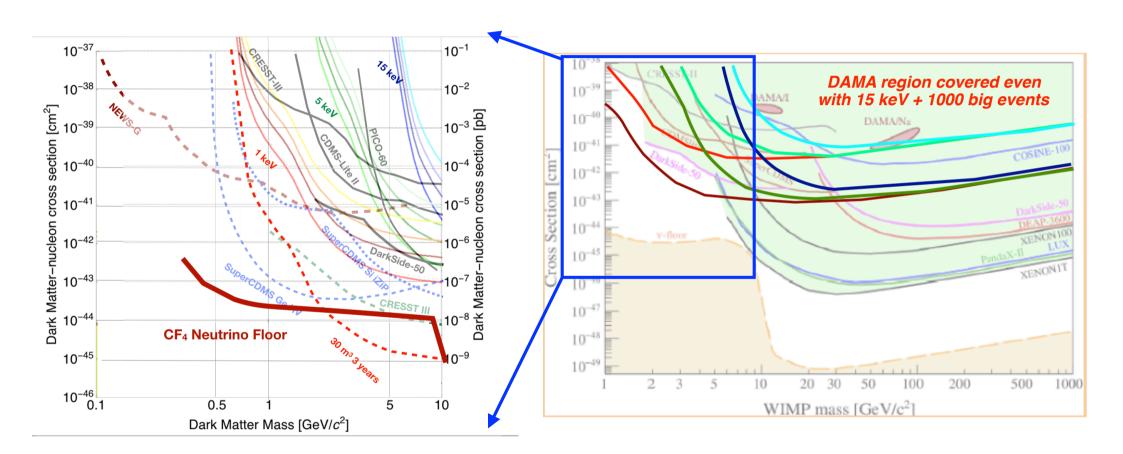
3. For each event the 2D coordinates are extracted from signal distribution

Experimental assumptions



- Angular resolution $\sigma_{\rm g}$ is taken as 30x30 deg² and is <u>independent</u> on the energy of the recoil
- ullet The histogram containing the data in binned so that each bin is $\pm 1\sigma_{_{\alpha}}$ (so twice as resolution)
- ullet The angular resolution effect is applied to the simulation with a **gaussian smear** centred in zero and with $\sigma_{\rm g}$ as standard deviation
- Perfect head-tail recognition is considered
- Low energy threshold determines the minimum energy detectable, thus the angular spectrum shape
- High energy threshold determines is up to the end of the spectrum (200 keV recoils are expected to be visible and contained)
- The probability of hitting a specific element is considered in the simulation, taking into account the gas mixture

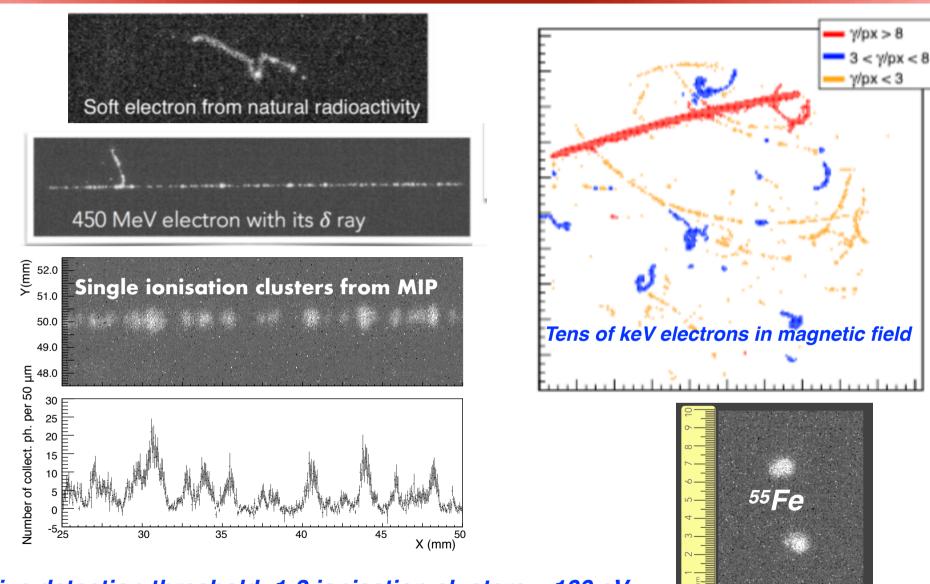
Results



Comparison with other experiments

Please, keep in mind that only 1 m³ year exposure is shown for CYGNO

get up to ± 100 kg year exposure with 30 m³ 3 years


0 bkg & 1000 bkg shown for each threshold

CYGNO/INITIUM beyond WIMP searches: electron recoils from Neutrinos

Electron recoil thresholds erc

Tentative detection threshold: 1-2 ionisation clusters > 100 eV Tentative directional detection threshold: >20-30 keV

Directionality as a new window on neutrino physics erc

Neutrinos: an opportunity for directional DM detectors, rather than an inconvenience

C. O'Hare et al, Phys. Rev. D 92 063518 (2015)

Coherent Neutrino-Nucleus scattering **NOTE**: only a directional DM detector can distinguish from WIMP signal

solar 6th Sep. $_{3.3333-5 \text{ keV}}$ neutrinos **WIMPs** 26th Feb. 3.3333 - 5 keV

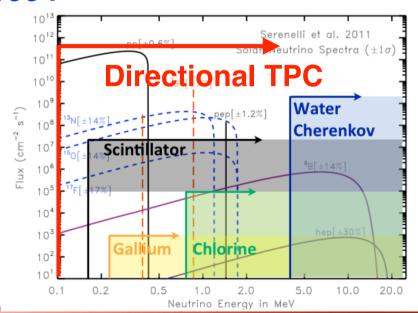
NEW! Physics reach under study Elastic Neutrino-Electron scattering with event by event precise neutrino energy measurement **NOTE:** only a directional DM detector can distinguish from ER background

Message from back on the envelope evaluations & old published papers: O(50 kg) directional detector can measure neutrinos through elastic scattering using directionality to reject electromagnetic backgrounds (CYGNO PHASE 2 ok!)

Elastic neutrino - electron scattering with gaseous TPC: revitalising old ideas

1996

A HIGH RATE SOLAR NEUTRINO DETECTOR
WITH ENERGY DETERMINATION


1992

He
J. Séguinot, T. Ypsilantis
Collège de France, IN2P3 - CNRS
et CERN, Genève, Suisse

A. Zichichi CERN, Genève, Suisse et INFN-Laboratoire national du Gran Sasso, Italie

HELLAZ: A HIGH RATE SOLAR NEUTRINO DETECTOR

1994 WITH NEUTRINO ENERGY DETERMINATION

A possible gas for solar neutrino spectroscopy

C. Arpesella^a, C. Broggini^b, C. Cattadori^c

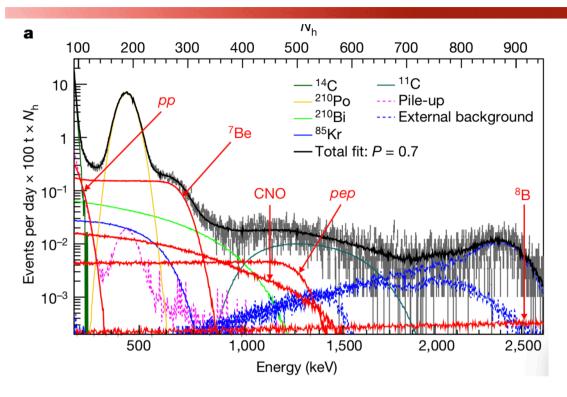
- ^a I.N.F.N. Laboratori Nazionali del Gran Sasso, I-67010 Assergi (AQ), Italy
 - ^b I.N.F.N. Sezione di Padova, via Marzolo 8, I-35131 Padova, Italy
 - ^c I.N.F.N. Sezione di Milano, via Celoria 16, I-20133 Milano, Italy

CF₄

Received 25 July 1995; revised 24 October 1995

Tetrafluoromethane appears very attractive for low energy neutrino spectroscopy because it has a high density of 3.7 g ℓ^{-1} (at normal pressure and 15°C temperature), which maximizes the number of target electrons, and it contains low Z nuclei, which minimizes the multiple scattering and allows for the reconstruction of the electron direction.

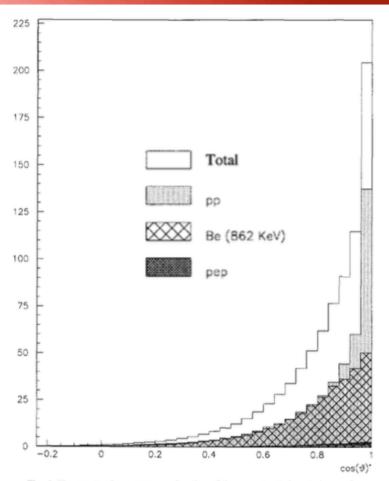
Typical spatial resolution: 1-2 mm Energy threshold: 100 keV


The detector has two new outstanding features:

- it can give the spectrum of the low energy neutrinos from the Sun;
- it is sensitive to and it can identify solar neutrinos of different origin: pp, ⁷Be, and, eventually, ⁸B.

Borexino Sun neutrino measurement

Solar neutrino	Rate (counts per day per 100 t)
рр	$134 \pm 10^{+6}_{-10}$
⁷ Be	$48.3 \pm 1.1^{+0.4}_{-0.7}$
pep (HZ)	$2.43 \!\pm\! 0.36^{+0.15}_{-0.22}$
pep (LZ)	$2.65 \!\pm\! 0.36^{+0.15}_{-0.24}$
⁸ B _{HER-I}	$0.136^{+0.013}_{-0.013}{}^{+0.003}_{-0.003}$
⁸ B _{HER-II}	$0.087^{+0.080}_{-0.010}{}^{+0.005}_{-0.005}$
⁸ B _{HER}	$0.223^{+0.015}_{-0.016}{}^{+0.006}_{-0.006}$
CNO	<8.1 (95% C.L.)
hep	<0.002 (90% C.L.)


total LER exposure is 1,291.51 days \times 71.3 t.

- **CYGNO** has O(100) um tracking Borexino interaction position resolution:12 cm
- ©CYGNO has 20-30 keV DIRECTIONAL threshold Borexino Ethr: 160 keV
- CYGNO directionality provides background discrimination

Solar neutrino measurements with directionality

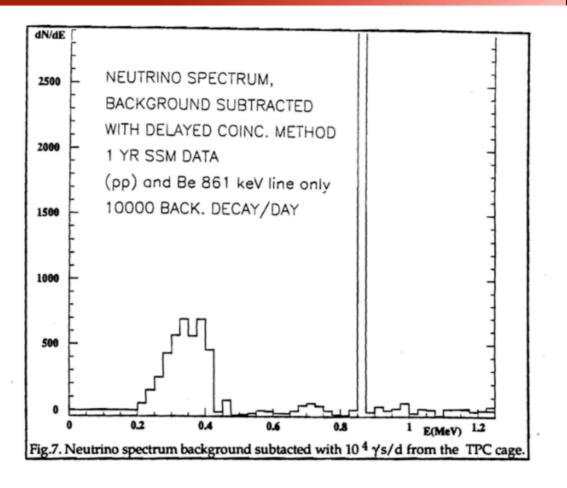
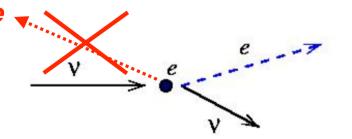
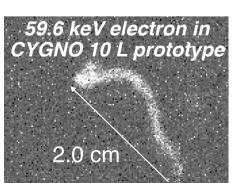



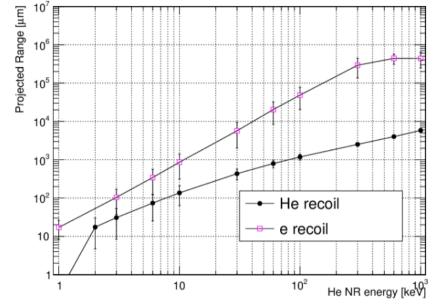
Fig. 4. The events of one year as a function of the reconstructed scattering angle.

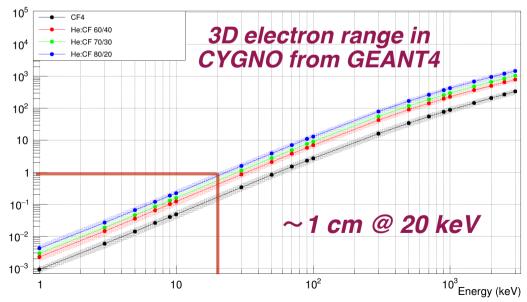
Given the Sun position, recoils in opposite direction are kinematically forbidden

Differently from WIMPs, background can be measured on sidebands data

CYGNO as an innovative detector for low energy, precision solar neutrino spectroscopy


He:CF4 allows a lot of electron, with a low density gas

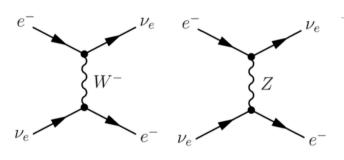

Good target/density ratio


- CYGNO readout approach has O(100) um track resolution
- CYGNO can aim at 20 keV DIRECTIONAL threshold for electrons (i.e. 80 keV neutrinos)

CYGNO is sensitive to single ionisation cluster for MeV electrons (i.e. calorimetry)

Question to answer: upper energy threshold. Obvious: contained track But: if track not on dE/dx plateau, could measure E through dE/dx?

Expected # of events



Interaction rate of solar neutrino from the ppI cycle with electrons in the prototype of the

INITIUM project

Samuele Torell

PRELIMINARY

$$d\sigma = \frac{1}{s_0} \frac{1}{s_1} \dots \frac{1}{s_N} \frac{1}{\varphi} |M_{i \to f}|^2 (2\pi)^4 \delta^4 \left(P_A + P_B - \sum_{i=0}^{i=N} P_i \right) \cdot \prod_{i=0}^{i=N} \left(\frac{d^3 P_i}{2E_i (2\pi)^3} \right)$$
(1)

$$e^{-} |M_{i \to f}|^2 = 64 \frac{G_F^2 E_\nu^2 m_e^2}{2} \left\{ (V+A)^2 + (V-A)^2 \left(1 - \frac{T_e'}{E_\nu}\right)^2 - (V^2 - A^2) \left(\frac{m_e T_2'}{E_\nu^2}\right) \right\}$$
(13)

$$\frac{d\sigma(E_{\nu}, T_e')}{dT_e'} = \frac{G_F^2 m_e}{2\pi} \left\{ (2 + g_V + g_A)^2 + (g_V - g_A)^2 \left(1 - \frac{T_e'}{E_{\nu}} \right)^2 - (g_V - g_A)(g_V + g_A + 2) \frac{m_e T_e'}{E_{\nu}^2} \right\}$$
(20)

$$T'_{e}(\theta) = \frac{2E_{\nu}^{2}m_{e}\cos^{2}(\theta)}{(E_{\nu} + m_{e})^{2} - E_{\nu}^{2}\cos^{2}(\theta)}$$

$$\sigma(E_{\nu}) = \frac{G_F^2 m_e}{2\pi} \left\{ (g_V + g_A + 2)^2 \left[\frac{2E_{\nu}^2}{(m_e + 2E_{\nu})} - T'_{e,Thr} \right] + \right\}$$

$$-(g_V - g_A)^2 \frac{E_{\nu}}{3} \left[\left(1 - \frac{2E_{\nu}}{m_e + 2E_{\nu}} \right)^3 - \left(1 - \frac{T'_{e,Thr}}{E_{\nu}} \right)^3 \right] +$$

Including neutrino oscillations

$$-(g_V - g_A)(g_V + g_A + 2)\frac{m_e}{2} \left[\frac{4E_\nu^2}{(m_e + 2E_\nu)^2} - \frac{T_{e,Thr}^2}{E_\nu^2} \right]$$
(23)

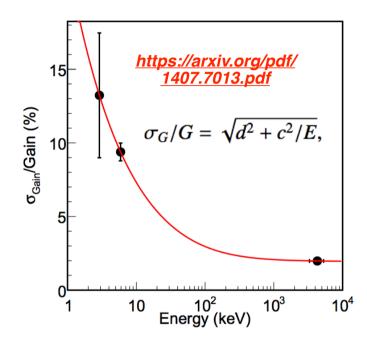
For 1 m³ of He:CF₄ 60:40 with 20 keV threshold

$$R = N_e \cdot \int_{E_{min}}^{E_{max}} w(E) \varphi_{ppI}(E) \sigma(E) dE \qquad R = 2.9 \cdot 10^{-8} \frac{events}{s \cdot m^3} = 0.9 \frac{events}{y \cdot m^3}$$

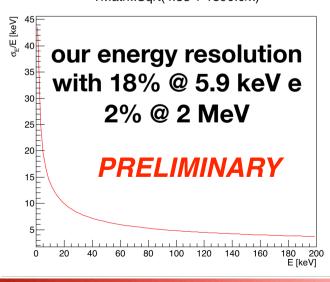
Elisabetta Baracchini - CYGNO physics cases & measurements - CYGNO international meeting, June 2020

Neutrino energy resolution from expected electron resolutions

The neutrino energy resolution σ_{Ev}/E_v is obtained from the derivatives of eq. (2) i.e.


$$\sigma_{Ev}/E_{v} = \sqrt{\{D_{\theta}^{2}\sigma_{\theta}^{2} + D_{T}^{2}(\sigma_{T}/T)^{2}\}}$$
 (11)

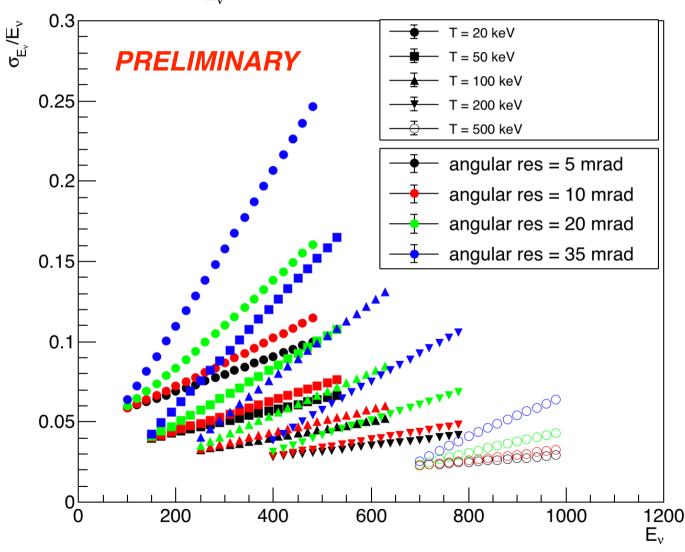
ere the dimensionless logarithmic derivatives


$$D_{\theta} = (1/E_{v})(\partial E_{v}/\partial \theta) = (E_{v}/m_{e})\sqrt{\{1 + (2m_{e}/T) - [1 + (m_{e}/E_{v})]^{2}\}}$$

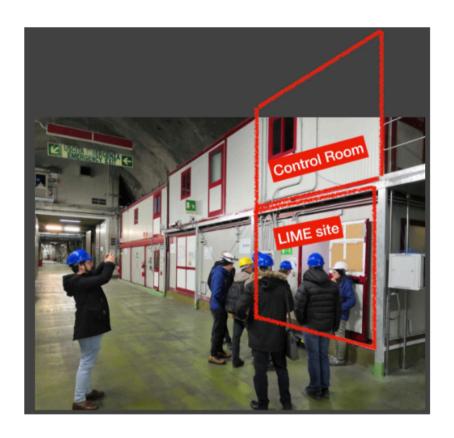
$$D_{T} = (T/E_{v})(\partial E_{v}/\partial T) = (E_{v} + m_{e})/(T + 2m_{e})$$
(12)

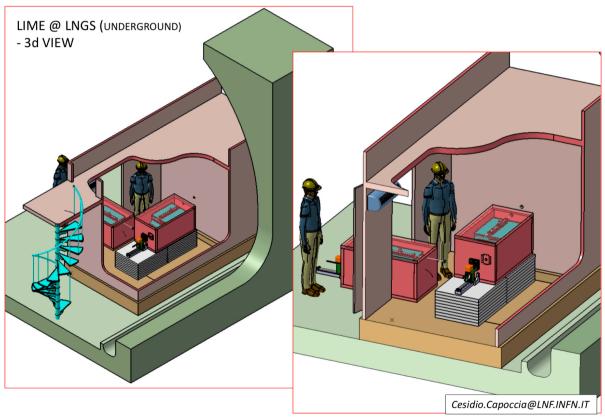
Input parameters: energy & angular resolution

TMath::Sqrt(4.33 + 1890.0/x)



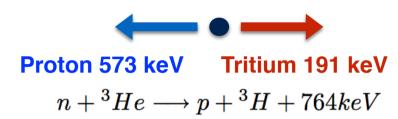
Neutrino energy resolution

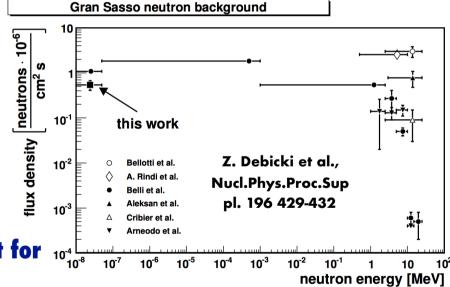



Measurements with LIME: underground LNGS neutron flux

LIME @ underground LNGS erc

Neutron flux measurement @ LNGS with LIME


Environmental neutrons in underground halls are background to all current & future experiments: their precise knowledge is fundamental


- Simultaneous sensitivity to thermal and fast neutron flux with³He:He:CF₄:SF₆ at atmospheric pressure
 - Fast neutron through nuclear recoil

- O(10 keV) or lower threshold on fast neutrons
- Precise spectral measurement
- Directional measurement
- 💆 Seasonal measurement
- LIME location in front of DAMA setup
- Possibility to optimize pressure and gases content for higher yield or lower directional threshold

PRELIMINARY

± 250 detected nuclear recoils induced by fast neutrons/year ± 250 detected thermal neutrons through capture/year