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We have made a very important advance

over the past century. Neutrinos have mass.

That means that the mechanism by which

neutrinos gain mass is different from the

other fermions.

Arthur B. McDonald

This discovery leads to specific predictions... (Sudbury Netrino Observatory)
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The Origin of Mass

The mechanism by which particles gain
mass in the Standard Model may not
apply for neutrinos.

The neutrino mass mechanism remains
unknown.



normal hierarchy (NH)

The mechanism by which particles gain
mass in the Standard Model may not
apply for neutrinos.

The neutrino mass mechanism remains
unknown.

Given the primordial abundance of
neutrinos, even a small finite mass has a
measurable impact on cosmic evolution.

Measurable in next generation of
experiments.



Tritium beta decay Holmium electron capture
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Kinematic spectra from beta decay or electron capture embed

the neutrino mass near the endpoint.
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Kinematic spectra from beta decay or electron capture embed

the neutrino mass near the endpoint.



18.5 keV
Ti/2 12.3 yrs

163Ho
2.83 keV _»
T1/2 4570 ME

187Re

2.5 keV :
T1/2 4.5 Gyrs

15|

155 eV ‘
T1/2 4.1x1020 yrs

First,
pick a source...
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3H
18.5 keV
Ti/2 12.3 yrs

163Ho
2.83 keV
t1/2 4570 yrs

187Re
2.5 keV
T1/2 4.5 Gyrs
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155 eV
T1/2 4.1x1020 yrs

Electromagnetic/ Frequency

KATRIN - Project 8

Calorimetric

ECHO - HOLMES

MARE (ended)

No experiment yet



Electron transfers all of its energy to
the absorbing medium.

Calorimetric

(Cryogenic Bolometers)

Electromagnetic filtering of electrons of
selected energy.

Electromagnetic Collimation
(MAC-E Filter)

Use photon spontaneous emission from
electron in magnetic field.

Frequency-Based
(Cyclotron Radiation Emission Spectroscopy)




Use photon spontaneous emission from
electron in magnetic field.

Frequency-Based
(Cyclotron Radiation Emission Spectroscopy)




Cyclotron Radiation
Emission
Spectroscopy

Frequency Approach

SH — 3He™ + e7 + 1,

“Never
measure
anything but
frequency.”

A. L. Schawlow O. Heaviside

Use frequency measurement of cyclotron
radiation from single electrons:

y, ® Source transparent to

7

B field 1 ® No e- transport from
R

microwave radiation

source to detector

® Leverages precision
inherent in frequency
techniques

B. Monreal and JAF, Phys. Rev D80:051301




Cyclotron Radiation
Emission
Spectroscopy

Frequency Approach

SH — 3He™ + e7 + 1,

“Never
measure
anything but
frequency.”

A. L. Schawlow O. Heaviside
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feo = 27.992 491 10(6) GHz T~*

* Narrow band region of interest (@26 GHz).
* Small, but detectable power emitted.

P (17.8keV,90°,1T) = 1fW
P (30.2keV,90°,1T) = 1.7fW

B. Monreal and JAF, Phys. Rev D80:051301




start frequency of the first
track gives kinetic energy.

—

frequency chirps linearly,
corresponding to ~1 fW
radiative loss.

H
electron scatters
inelastically, losing energy
and changing pitch angle.

O

Eventually, scatters to an
untrapped angle

Project 8 - Event O
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(actually, this was our first event)
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A Phased Approach
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#Trapping coils = 8
arranged to provide

deep and shallow
fra pS. Electron
Trapping (1.005T)

Coils
#Commissioned using

krypton gas, but Trapped

optimized for tritium Electron

gas flow.
(1.005 T)

Gas

Molecules

The Phase Il Tritium Insert

Goal: Provide a first demonstration of
CRES technique using tritium.
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Basic Layout

Cryocooler
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Superconducting . ]
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Gas Cell

Main system consists of a

waveguide + + gas supply




Reconstructing Events
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Power spectrogram Reconstructed tracks and events

Reconstruction of events extends as short as 120 ps.

Predicted background from mis-reconstructed noise:

less than 1 event in planned Phase Il T2 data campaign
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Reconstructed tracks and events

Reconstruction of events extends as short as 120 ps.

Predicted background from mis-reconstructed noise:

less than 1 event in planned Phase Il T2 data campaign




Calibrating Efficiency

Use a field-shifting solenoid to sweep
the 17.8 keV 83mKr conversion line
across the frequency region of
interest for tritium data to determine
SNR vs. frequency
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Use detailed Monte Carlo to
simulate and study CRES event
topologies.
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Trap Configurations
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Deep Trap

We usually operate in one of two possible configurations:

(a) deep trap for high statistics; (b) shallow trap for high precision.

Best demonstrated instrumental width:

(2.8 eV natural line width)




Shallow Trap Linearity Measurements
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We can also test the linearity of the technique by measuring multiple

mono-energetic lines from 83mKcr.

Excellent agreement with previous measurements.




First tritium CRES spectrum

T, frequency spectrum
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First tritium from Phase 2:

e Data taken from winter 2019-2020 (82 days of livetime).

® Four-coil “deep” trap configuration with 1T mm3 active volume.
® Three overlapping frequency bands which cover 16.2-18.6 keV
® 3770 unique counts.




Unfolding Spectrum

Instrumental Lineshape Detection Efficiency
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First tritivm from Phase 2:

e The krypton data is used to constrain the instrumental energy resolution.

® A scan of the krypton 17 keV line provides a measurement of the detector efficiency.




First tritium CRES spectrum

T, endpoint result:

Eo = (18559.413%9) eV

Background rate:
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We extract a first tritium spectrum using the CRES technique.

Background levels controlled to better than <0.3 nHz/eV.




Going Forward...

(f
Phase lll:

(a) RF Demonstrator (200 cm3 volume, eV mass sensitivity)

(b) Atomic T Demonstrator (trap atomic tritium at high densities)

-
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Phase IV:

Atomic tritium source. Inverted ordering reach (40 meV)

-




Wish to transition from small circular waveguide cell to
large volume system.

Major new obstacles:
Maintaining signal to noise across larger volume

Field homogeneity for energy reconstruction

Phase Il

Goal: Expand technique to large volumes




Wish to transition from small circular waveguide cell to
large volume system.

Major new obstacles:
Maintaining signal to noise across larger volume

Field homogeneity for energy reconstruction

Remedies:

Switch from single waveguide to
patch array system

Radial reconstruction

Phase Il

Goal: Expand technique to large volumes




New Antenna Arrays

Conceptual design of RF array
design options

SEEEE NP NE®

e e e e

Waveguide Slot Array Patch Antenna Array

Full design campaign underway to characterize signal-to-noise

and localization expected from new phased antenna array.




New Antenna Arrays
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Conceptual design of RF array
design options

SEEEE NP NE®

e e e e

Waveguide Slot Array Patch Antenna Array

Full design campaign underway to characterize signal-to-noise

and localization expected from new phased antenna array.




cres | Need 1 T magnetic field.

Insert \\\

10-20 cm long (200 cm3)
magnetic “bathtub” trap.

Large bore MRI

magnet
installed and
running




Forward...
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Phase lll:

(a) RF Demonstrator (200 cm3 volume, eV mass sensitivity)

(b) Atomic T Demonstrator (trap atomic tritium at high densities)




calculated final state distribution of T,

electronic ground state

ro-vib excitations _
excited

electronic states
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Need to overcome molecular final
states to reach “inverted” scale.



Atomic tritium provides
a narrower profile,
allowing one to access
inverted scale.
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Need to overcome molecular final
states to reach “inverted” scale.
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Need to overcome molecular final
states to reach “inverted” scale.

Atomic tritium provides
a narrower profile,
allowing one to access
inverted scale.

Challenges:

How to creates
| L trap!
How to trap:
How to keep PHt 1Ty
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H,D and T have unpaired
electrons (non-zero p)

Atom tend to (anti-)align with B-
field if change is adiabatic

loffe Magnetic
Trap

Potential energy...

—

AE = —ji- B

(atoms follow field mimimim)



Making Atomic Tritium

Thermal Cracker

Simultaneous efforts to create large flow of tritium atoms, typically at about
100 times higher than commercial crackers

(at high temperatures)



Fraction (Normalized)

Cooling Atomic Tritium

Cooling Cooling
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Need to reach sub-kelvin temperatures
to trap atomic tritium

(from very high cracking temperatures).

R&D for velocity/state selector
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Velocity Selected
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Max. Trapped Speed

Cracker
Accommodator
Nozzle

Velocity/State Selector
Magnetic Well

Quadrupol@w/
 skimmiers




Trapping Atomic Tritium
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loffe Coils

Pursuing an open loffe trap to contain tritium atoms at cold temperatures.

(Also exploring Halbach configuration for atom trapping)



Phase IV

Atoms
slow b)’ 60

Magnetic Quadrupole m/s across

L ¥ - 1 T 5:
Cracker Accommodator Nozzle Velodity and State =P

Sesing smbipelont $K_

~ 0.03 K Tritium Atoms

Vil 104 m> e

\ B=1T
B=3T

perconducting multipole at 2 K

Superconducting
Quadrupole

Ultimate atomic tritium experiment combines R&D
from Phase Ill into large RF array tritium trap.

Atomic source, transport, and trap combined for
large (m3) instrumented volume.
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Target Mass
Sensitivity

mg < 40 meV




Systematics and Sensitivity
- =- 90% confidence limits
90% credible intervals
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T, 107" m-3

Optimized density of 3.7x108 atoms/m3

N

Assume exposure of 5 m3y
Ty, 3.7x10"m~3

Full Bayesian analysis

Magnetic field uniformity of 0.1 ppm
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Number of Bayesian pseudo-experiments

Optimal energy resolution:

Sensitivity to mg (eV)

T
=

o = (115 +/- 2) meV.

T,3.7x10%m™3
(Optimized design)
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Phase IV

Goal: Break into the inverted neutrino mass scale




Systematics and Sensitivity

T TTTTI

Mainz, Troitsk—w

Mass of v, (meV)

Optimized density of 3.7x10'8 atoms/m3
Assume exposure of 5 m3y

Full Bayesian analysis

Magnetic field uniformity of 0.1 ppm

Optimal energy resolution:

N R I R of = (115 +/- 2) meV.

10 10° 10° 10*
Mass of lightest mass eigenstate (meV)

Phase IV

Goal: Break into the inverted neutrino mass scale




CRES can now be added
as a demonstrated
technique for studying
beta decay.

Phase Il has been
completed, with better

understanding on

CRES continues to
expand, with the eventual
. target of using an atomic
tritium source.



Thanks for

your attention!
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