

Angelo Nucciotti

Università di Milano-Bicocca e INFN - Sezione di Milano-Bicocca

Università di Roma "La Sapienza", July 8th, 2020

HOLMES collaboration

PSI R.Dressler E.Maugeri D.Schumann

> **ILL** U.Koester

CENTRA-IST M.Ribeiro-Gomes

Univ. Milano-Bicocca INFN Milano-Bicocca

M.Borghesi M.Faverzani E.Ferri A.Giachero A.Nucciotti G.Pessina A.Puiu S.Ragazzi (ERC PI)

INFN Genova

M.Biasotti G.Gallucci M.De Gerone M. Fedkevych F.Gatti

INFN Roma M.Lusignoli

INFN LNGS S.Nisi NIST B.Alpert D.Becker D.Bennett J.Fowler J.Gard G.Hilton J.Mates C.Reintsema D.Schmidt D.Swetz J.Ullom L.Vale

https://holmes0.mib.infn.it/

Outline

- ¹⁶³Ho decay calorimetry and neutrino mass measurement
- HOLMES status
 - isotope production and chemical purification
 - isotope mass separation and implantation
 - single detector R&D
 - detector array fabrication
 - detector read-out and DAQ
 - background measurements
- short and mid term program: 2020-2023
- beyond HOLMES: future of ¹⁶³Ho experiments
- PTOLEMY-0 as neutrino mass experiment: a quick overview

Electron capture calorimetric experiments

electron capture from shell ≥ M1

A. De Rújula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

- calorimetric measurement of Dy atomic de-excitations (mostly non-radiative)
- Q = 2.83 keV (determined with Penning trap in 2015)
 - end-point rate and v mass sensitivity depend on Q E_{M1}

A. Nucciotti, Direct Neutrino Mass Measurements, Università di Roma "La Sapienza", July 8th, 2020 4

Electron capture calorimetric experiments

- calorimetric measurement ↔ detector speed is critical
- accidental coincidences → complex pile-up spectrum
 - $> N_{pp}(E) = f_{pp} N_{EC}(E) \otimes N_{EC}(E) \text{ with } f_{pp} \approx A_{EC} T_{R}$

 A_{EC} EC activity per detector T_R time resolution (≈rise time)

Statistical sensitivity and single pixel activity

A. Nucciotti, Eur. Phys. J. C 74.11 (2014)

A. Nucciotti, Direct Neutrino Mass Measurements, Università di Roma "La Sapienza", July 8th, 2020 6

Statistical sensitivity and single pixel perfomances

1000 detector array

► A_{tot} = 300 kBq

► $6.5 \times 10^{16 \ 163}$ Ho nuclei $\rightarrow \approx 18 \ \mu g$

low T microcalorimeters with implanted ¹⁶³Ho

- ► 6.5×10^{13} atom/det $\rightarrow A_{ec}$ =300 c/s/det
- ► $\Delta E \approx 1 \text{ eV}$ and $\tau_{R} \approx 1 \mu s$

B. Alpert et al., Eur. Phys. J. C, (2015) 75:112 A. Nucciotti, Direct Neutrino Mass Measurements, Università di Roma "La Sapienza", July 8th, 2020

¹⁶³Ho production and purification

HOLMES might need \approx 300 MBq of ¹⁶³Ho

(for conservative 0.1% global embedding efficiency)
¹⁶²Er neutron irradiation at ILL nuclear reactor
¹⁶³He ab available provision at ICL

- ¹⁶³Ho chemical purification at PSI
 - ≈110 MBq of purified ¹⁶³Ho available at Genova
- ≈250 kBq of co-produced ^{166m}Ho

more ¹⁶²Er available to produce other **80 MBq** of ¹⁶³Ho

HOLMES mass separation and ion implantation

HOLMES ion implantation system / 1

- HV power supply tested up to 50kV
- HV safety & optical fiber remote control
- tests with Cu ion beam in progress
- target from metallic ^{nat}Ho ready
 - ▶ intermetallic Ti₂Ni₂Sn/HoNiSn
 - high pressure and temperature sintering

HOLMES ion implantation system / 2

first ion beam tests with Cu target

A. Nucciotti, Direct Neutrino Mass Measurements, Università di Roma "La Sapienza", July 8th, 2020

HOLMES ion implantation system / 3

- next steps with present ion implanter configuration
 - optimize ^{nat}Ho ion beam and assess efficiency
 - test different ion source sputter targets with ^{nat}Ho (sintered in Ge) and molecular plated from PSI)
 - ► switch to enriched ¹⁶³Ho target
 - ▶ array low dose ¹⁶³Ho implantation (≈1Bq/det)

HOLMES ion implantation system extension

A. Nucciotti, Direct Neutrino Mass Measurements, Università di Roma "La Sapienza", July 8th, 2020 13

Superconducting transition edge sensors (TES)

- superconducting thin films operated inside the phase transition at T_c
 - ► Mo/Cu bilayers → tunable T_c (20÷200 mK)
- high sensitivity $TdR/(RdT) \approx 100) \rightarrow$ high energy resolution
 - ► as thermal sensors → thermodynamical fluctuation limited → $\sigma_E^2 \approx \xi^2 k_B T^2 C$
- strong electron-phonon coupling \rightarrow high intrinsic speed
- low impedance → SQUID read-out → multiplexing for large arrays

A. Nucciotti, Direct Neutrino Mass Measurements, Università di Roma "La Sapienza", July 8th, 2020 14

Cryogenic set-up

LHe-free dilution fridge

detector holder mounted with calibration source

instrumented for microwave multiplexed readout of rf-SQUIDs

- \rightarrow 1 HEMT + 2 coax RF lines
 - \rightarrow **8** µwave multiplexing chips
 - → 256 detectors

4 HEMTs available \rightarrow 1024 ch

detector holder

Single TES detector R&D

- prototypes w/o ¹⁶³Ho
- $\Delta E_0 \approx 3.3 \text{ eV}$

- $\tau_{rise} \approx$ **13** µs (limited to match read-out)
- $\tau_{decay} \approx 54 \ \mu s$
- pile-up detection algorithms (*work in progress*):
 - for $f_{\rm samp} = 0.5 {\rm MHz}$, $\tau_{\rm rise} \approx 20 {\mu s}$
 - Singular Value Decomposition $\rightarrow \tau_{R} \approx 1.8 \ \mu s$

Alpert B. et al., Eur. Phys. J. C (2019) 79:304 A. Nucciotti, Direct Neutrino Mass Measurements, Università di Roma "La Sapienza", July 8th, 2020 16

Detector read-out and DAQ

- read-out: µwave rf-SQUID multiplexing
- μ MUX17A optimized for HOLMES
 - ► 33 resonances in 500 MHz (4→8 GHz band)
- DAQ: Software Defined Radio
- ROACH2/ADC (32 channel fw)
 - base-band tone generation (0-512MHz)
 - base-band tone IQ de-modulation (0-512MHz)
 - rf-SQUID phase signal de-modulation
- custom IF-board \rightarrow C-band up- / down-conversion
- read-out / DAQ ready for 64 channels

rect Neutrino Mass Measurements, Università di Roma "La Sapienza", July 8th, 2020 17

HOLMES detector array design and fabrication

- TES array fabrication after first steps at NIST
- 163 Ho implantation and final 1 μ m Au layer deposition
- final micromachining step definition in progress
- 4×16 sub-array for low parasitic L and high implant efficiency

SiN membrane release

Target chamber for absorber fabrication / 1

- ► implanted ¹⁶³Ho concentration in absorber saturates
- compensate by Au co-evaporation

Target chamber for absorber fabrication / 2

- background pressure $\approx 10^{-8}$ mbar
- Ar ion current $\approx 175 \,\mu$ A/source (without water cooling)
 - Au deposition rate with 4 ion sources >100nm/h
- remote control for use with ion-implanter
- ¹⁶³Ho beam diagnostic:
 - wire cross + Faraday cup

sources

TES array

A. Nucciotti, Direct Neutrino Mass Measurements, Università di Roma "La Sapienza", July 8t

4 × Au sputter targ

TES array

Detector array fabrication / 1

- \bullet 1 μm Au final layer deposition in Target Chamber
 - deposition rate calibrated
 - uniformity tested with 4 sources
- Au layer patterned by lift-off
- full fabrication process successfully tested on 2 arrays
 - arrays characterized at low temperature \rightarrow Au quality and sticking are OK

Detector array fabrication / 2

- two options for membrane release (i.e. final array fabrication step)
- Silicon Deep Reactive Ion Etching (DRIE)
 - best for close packing and high implant efficiency
 - R&D almost complete
- Silicon KOH anisotropic wet etching
 - requires more spacing between pixels
 - succesfully tuned → HOLMES baseline

Fully processed detector array testing

Low energy background

- \bullet environmental γ radiation
- $\gamma,$ X and β from close surroundings
- cosmic rays
 - ▷ GEANT4 → **bkg** ≈ 10⁻⁵ c/eV/day/det (0 4 keV)
- internal radionuclides
 - $_{\triangleright}$ ^{166m}Ho ($\beta^{-},$ Q = 1.8 MeV, $\tau_{_{1\!/_{\!2}}}$ = 1200 y, produced along with $^{163}Ho)$
 - ▷ GEANT4 → bkg ≈ 0.5 c/eV/day/det/Bq(^{166m}Ho)
 - ▷ $A(^{163}Ho) = 300Bq/det$ ($\leftrightarrow \approx 6.5 \times 10^{13}$ nuclei/det)

 $bkg(^{166m}Ho) < 0.1 c/eV/day/det \rightarrow A(^{163}Ho)/A(^{166m}Ho) > 1500$

 $\rightarrow N(^{163}\text{Ho})/N(^{166m}\text{Ho}) > 6000$

Background measurement in HOLMES set-up

- **HOLMES** detectors (≈90 day×det)
 - 200×200×2 μm³ Au absorbers
 - vertical placement ($\rightarrow \approx \text{no RC?}$)
 - counts/eV/day sea level no material selection, no shielding
 - $bkg(4-10keV) \approx 1.1 \times 10^{-4} c/eV/day/det$
- Geant4 simulations are in progress
 - cosmic rays (only muons), ²³⁸U, ²³²Th, ⁴⁰K, radon, environmental γ, ...
- on-site γ measurements with HPGe detector
- more background measurement (w/o ¹⁶³Ho)

A. Nucciotti, Direct Neutrino Mass Measurements, Università di Roma "La Sapienza", July 8th, 2020 25

Effect of flat background on sensitivity

exposure $N_{det}t_{M} = 1000 \text{ det} \times 3 \text{ y}$

background measurement

Detector time resolution

- for subsequent (Δt) events with energy E_1 and E_2 : time resolution $\mathbf{\tau}_{\mathbf{R}} = \mathbf{\tau}_{\mathbf{R}}(E_1, E_2)$ $N_{pp}(E) = A_{EC} \int_{0}^{\infty} \mathbf{\tau}_{\mathbf{R}}(E, \epsilon) N_{EC}(\epsilon) N_{EC}(E - \epsilon) d\epsilon$
- Montecarlo pile-up spectrum simulations
- ▷ event pairs with $E_1 + E_2 \in [2.6 \text{ keV}, 2.9 \text{ keV}]$ (drawn from ¹⁶³Ho spectrum), $\Delta t \in [0, 10\mu \text{s}]$ ▷ pulse shape and noise from NIST TES model, sampled with f_{samp} , record length, and *n* bit
- ⊳ $f_{samp} = 0.5MHz$, $τ_{rise} \approx 20\mu s$
- mycroft a tool to discriminate pile-up based on

HOLMES status summary

✓ purified ¹⁶³Ho to ion implant 300Bq in ≈300 detectors (+ tests)

ion implanting system

- ion source and magnetic mass separation
- ✓ ion source optimization with Ho \rightarrow 2020
- implanter/focusing/target chamber integration for high dose ion implantation $\rightarrow 2021$

single TES pixel suitable for HOLMES

64 pixel array fabrication

- ✓ first wafer produced by NIST \rightarrow 22 arrays
- KOH backside etching (R&D on DRIE in progress)
- target chamber for Au co-deposition
- full array fabrication without ion implantation
- ✓ array fabrication with implanted 163 Ho → low dose in 2020, high dose in 2021

MUX & DAQ

- SDR firmware for 32 channels
- HW for 64 channels (mux chip, HEMT/coax, IF board, ROACH2)

analysis tools

HOLMES short and mid term program (2020-2023)

- optimize ^{nat}Ho ion beam with different targets
- first low dose ¹⁶³Ho implantation (\approx 1 Bq) in array (w/o focusing) \rightarrow 2020
 - ▶ 1 month data taking can provide a m_v statistical sensitivity ≈10 eV
- focusing stage and target chamber integration
- optimize high dose ¹⁶³Ho implantation (\approx 300 Bq?) \rightarrow 2021
 - ▶ start high statistics measurement with 64 channels \rightarrow 2021

2021 → 2023 program

- increase number of deployed arrays
- ► end-point measurement ≈1 eV sensitivity
- compare HOLMES vs. ECHo (high vs. low activity)
- check shape and enhancements above M1 peak
- high statistics systematic effects analysis

ECHo-100k vs. HOLMES (Montecarlo simulations)

From HOLMES to a 0.1eV experiment

A. Nucciotti, Direct Neutrino Mass Measurements, Università di Roma "La Sapienza", July 8th, 2020 31

PTOLEMY project

- PonTecorvo Observatory for Light, Early-universe, Massive-neutrino Yield
- PTOLEMY concept: Relic Neutrino Capture on Tritium Nuclei
- S. Weinberg in 1962 [Phys. Rev. 128:3, 1457] and Cocco, Mangano, Messina in 2007 [JCAP06(2007)015]

https://ptolemy.lngs.infn.it/

PTOLEMY demonstrator: PTOLEMY-0

 5γ

140

120

 $\Delta E=$ 0.113 eV @ λ = 1570 nm (0.79 eV)

80

60

L. Lolli et al. Appl. Phys. Lett. 103, 041107 (2013)

Amplitude (mV)

100

FWHM 2γ

40

Cyclotron Radiation Electron Spectroscopy in 1T

- EM Filter electrodes are set ~1 msec before electrons enter
- Kinetic energy of electrons drained as they climb a potential under **E**×**B** and **B**×**VB** drifts.
- Electrons with energy $>q_{P}(V_{TFS}-V_{T})=Q-\mathcal{O}(10\text{eV})$ in low B field region are transported into TES μ calorimeters with $\Delta E \approx 0.05 \text{ eV}$

500

0

20

PTOLEMY-0 and neutrino mass sensitivity

