

KATRIN: First neutrino mass results, next steps and the future

Magnus Schlösser for the KATRIN collaboration

INFN seminar, 8 July 2020, Online

INSTITUTE FOR NUCLEAR PHYSICS, TRITIUM LABORATORY KARLSRUHE

Short motivation

~300 neutrinos per cm³

More motivation in previous talks

08. July 2020 | INFN Seminar | Magnus Schlösser

Hubble Ultra Deep field, NASA and the European Space Agency, http://hubblesite.org/newscenter/archive/releases/2004/07/image/a/warn/

Moore's Law of direct neutrino mass searches

Tritium Laboratory Karlsruhe

Tritium β-decay

KATRIN's aim: Measurement of m_v with a sensitivity of 200 meV/c²

Tritium Laboratory Karlsruhe

The Karlsruhe Tritium Neutrino Experiment

Tritium Laboratory

Karlsruhe

The Karlsruhe Tritium Neutrino Experiment

ultra-stable high-luminosity windowless gaseous tritium source (10¹¹ Bq)

high-resolution MAC-E filter with < 1 eV energy resolution

TFK

Tritium Laboratory Karlsruhe

katrin.kit.edu

The Tritium Laboratory Karlsruhe

Tritium Laboratory Karlsruhe (TLK)

40 g Tritium

1993

- Two missions:
 - Fuel cycle for fusion reactors
 - KATRIN Experiment

Karlsruhe Institute of Technology Campus North

Molecular decay

The stable tritium source

The closed tritium loop of KATRIN and the TLK

Closed tritium processing needed to provide the high activity and isotopic tritium purity for KATRIN

Tritium Laboratory Karlsruhe

First tritium "engineering" run with KATRIN 2018

Successful operation of source and spectrometer sections at 10⁻³ stability

- 2 week run at full column density
- Reduced activity and tritium purity: 1% DT, 99% D₂

First neutrino mass campaign with KATRIN 2019

First KATRIN measurement campaign

- 4-week long campaign with high-purity tritium
- April 10 May, 13 2019
- 274 spectra (each 2 h)
- **521.7** h for analysis interval $[E_0 40 \text{ eV}, E_0 + 50 \text{ eV}]$
- Source activity 2.45 10¹⁰ Bq
- Tritium purity ($\epsilon_T = 97.5$ %)

Tritium throughput 4.9 g / day

Tritium source parameters

Very high tritium purity achieved

- Reduced column density (22%)
- Radiochemical methane generation
- Throughput limited (initial burn-in effect)

Ingredients for integral spectrum

Tritium Laboratory Karlsruhe

Generation of final spectrum

No spatial effects in single pixel fits

Strategy for first neutrino mass analysis

- Add up all runs (average slow control parameters, excellent HV stability!)
- Add up all pixel (average transmission function)

Additional systematics by "simplification" (<< statistical uncertainty in this run!)

Uncertainty breakdown

Analysis strategy

Analysis on Monte Carlo data

- Generated from actual sensor data
- Neutrino mass = 0 eV
- Freezing before unblinding

Model blinding

- Add unknown scaling to final-state distribution calculation → would result in shifted neutrino mass
- Independent fitting strategy and teams
 - Systematics via 1) Covariance matrix and 2) MC propagation

Final spectral fit

Final fit results

Independent analysis methods systematics propagation and parameter fit

Neutrino mass

$$m^{2}(\nu_{e}) = (-1.0^{+0.9}_{-1.1}) \text{ eV}^{2}$$
(90% C. L.)

Endpoint

 $E_0 = 18573.7 \pm 0.1 \text{ eV}$

Phys. Rev. Lett. 114, 013003 (2015)

Q-value ($\Delta M(T, {}^{3}He) = (18575.2 \pm 0.5) eV$

agreement

Q-value (KATRIN) (18575.72 ± 0.07) eV

Understanding of final result

Karlsruhe

Neutrino mass measurements

Search for eV sterile neutrinos

Approach for eV sterile search

- Same data as for neutrino mass measurement range: [E₀ – 40 eV, E₀ + 50 eV]
- Same systematics inputs
- Model: 3 active + 1 sterile neutrino
- Grid search: m₄ (mass) and |U_{e4}|²(mixing)
- Lowest effective mass for active neutrino 0.009 eV (in normal ordering)

First KATRIN results for sterile neutrinos

- Demonstrated sterile neutrino search complementary to oscillation measurements
- Better sensitivity than Mainz and Troitsk for low masses
- We are approaching to the Neutrino-4 results

Large fractions of the *reactor anti-neutrino anomaly* (RAA) will be covered in future KATRIN campaigns

2nd neutrino mass campaign

- Measurement time:
- Gas density:
- Isotopic purity:
- Source activity:
- Total statistics:

- 31 days 84% 97.5% tritium 9.8 · 10¹⁰ Bq
- 4 · 10⁶ e's

Unblinding soon

Source operation during 2nd neutrino mass run

Tritium purity *(in selected data)* Required > 95%, Achieved ≈ 99%

Methane problem solved!

Remaining structure correlated to small temperature fluctuations

24/7 inline Raman spectroscopy

Tritium Laboratory Karlsruhe

Operations in 2020

A view to the future

Karlsruhe

keV sterile searches at KATRIN

KATRIN beamline with novel SDD "TRISTAN" detector

Summary & Conclusion

KATRIN achieved world-best direct neutrino mass limit

$m_{ m v}$ < 1.1 eV (90% CL)

KATRIN Collab, Phys. Rev. Lett. 123, 221802

KATRIN is in operation for next "1000 days"

m_{ν} < 200 meV (90%CL) & search for "new physics"

First data on eV and keV sterile neutrinos will be published soon

The KATRIN collaboration

FRKELE)

Funding and support from: Helmholtz Association (HGF), Ministry for Education and Research BMBF (05A17PM3, 05A17PX3, 05A17VK2, and 05A17WO3), Helmholtz Alliance for Astroparticle Physics (HAP), and Helmholtz Young Investigator Group (VH-NG-1055) in Germany; Ministry of Education, Youth and Sport (CANAM-LM2011019), cooperation with the JINR Dubna (3+3 grants) 2017–2019 in the Czech Republic; and the Department of Energy through grants DE-FG02-97ER41020, DE-FG02-94ER40818, DE-SC0004036, DE-FG02-97ER41033, DE-FG02-97ER41041, DE-AC02-05CH11231, and DE-SC0011091 in the US.

34 08. July 2020 | INFN Seminar | Magnus Schlösser

Tritium Laboratory Karlsruhe

11 91117