

SENSITIVITY STUDY OF CYGNO

G. Dho, E. Baracchini

SUMMARY

• INTRODUCTION

- Fake Experiments
 - THEORETICAL DISTRIBUTIONS
 - PROCEDURE

• DISCRIMINATION TECHNIQUE

• Results

SUMMARY

• INTRODUCTION

• Fake Experiments

- Theoretical Distributions
- Procedure

• DISCRIMINATION TECHNIQUE

• Results

GOAL OF THE WORK

 \bullet The goal is to find the curve in the cross section-mass plot, representing the 3 σ sensitivity of the experiment

It answers the question: How many events of WIMP-induced recoils do we need to determine there is a signal with a significance of 3 σ , when expecting μ_{b} background recoils?

• The method used exploits a MC technique in a frequentist approach

Based on repetition of a MC procedure to extract statistical information

BASIC WORKING OPERATION

• The MC procedure consists in the repetition of fake experiments

• Experiments with pure background or background +WIMP

 \bullet The extended profile likelihood ratio method will be used to find the 3 σ significance

G.Dho, E. Baracchini

SUMMARY

• INTRODUCTION

- Fake Experiments
 - THEORETICAL DISTRIBUTIONS
 - Procedure

• DISCRIMINATION TECHNIQUE

• Results

BACKGROUND

• The background expected for the two possible kind of information from the detector is:

Energy

- Unknown shape (similar to an exponential)
- Less discriminative power than angle

Being easier to model and more powerful in discrimination, the angular information will be used

2D angle

- Unknown shape
- At first order, in Galactic coordinates most of the background should dilute and look isotropic

15/06/2020

SIGNAL

• From WIMP theory, it is possible to calculate:

5₩ 10² 10⁴ 10⁴

Energy spectrum

4

Probability of hitting an element

Important during simulation to extract

15/06/2020

the element hit by the DM particle

- There are different simple ways to obtain the spectra when neglecting the Galactic escape velocity. When considering it, it becomes harder.
- Following Lewin-Smith paper (https://doi.org/10.1016/S0927-6505(96)00047-3)

$$dR = \rho_p \times \rho_t \times f(v) d^3 v$$

- There are different simple ways to obtain the spectra when neglecting the Galactic escape velocity. When considering it, it becomes harder
- Following Lewin-Smith paper (https://doi.org/10.1016/S0927-6505(96)00047-3)

 $dR = \rho_p \times \rho_t \times f(v) d^3 v$

Density and flux of projectile (DM)

- There are different simple ways to obtain the spectra when neglecting the Galactic escape velocity. When considering it, it becomes harder
- Following Lewin-Smith paper (https://doi.org/10.1016/S0927-6505(96)00047-3)

- There are different simple ways to obtain the spectra when neglecting the Galactic escape velocity. When considering it, it becomes harder
- Following Lewin-Smith paper (https://doi.org/10.1016/S0927-6505(96)00047-3)

G.Dho, E. Baracchini

- There are different simple ways to obtain the spectra when neglecting the Galactic escape velocity. When considering it, it becomes harder
- Following Lewin-Smith paper (https://doi.org/10.1016/S0927-6505(96)00047-3)

- There are different simple ways to obtain the spectra when neglecting the Galactic escape velocity. When considering it, it becomes harder
- Following Lewin-Smith paper (https://doi.org/10.1016/S0927-6505(96)00047-3)

• There are different simple ways to obtain the spectra when neglecting the Galactic escape velocity. When considering it, it becomes harder

15/06/2020

• Following Lewin-Smith paper (https://doi.org/10.1016/S0927-6505(96)00047-3)

- There are different simple ways to obtain the spectra when neglecting the Galactic escape velocity. When considering it, it becomes harder
- Following Lewin-Smith paper (https://doi.org/10.1016/S0927-6505(96)00047-3)

VELOCITY INTEGRAL

• To perform the velocity integral, both Sun velocity (v_{F}) and escape velocity (v_{esc}) must be considered

$$\int_{v_{min}(E_R)}^{\infty} \frac{v}{k_1} e^{-(|\vec{v}+\vec{v_E}|/v_0)^2} \Theta(v_{esc} - |\vec{v}+\vec{v_E}|) dv d\cos\theta d\varphi$$
$$|\vec{v}+\vec{v_E}| = \sqrt{v^2 + v_E^2 + 2vv_E \cos\theta}$$

• So the energy spectrum is:

VESC EFFECT ON ENERGY SPECTRUM

• Cut on the maximum energy of recoil spectrum

$$E_{R_{max}} = 2 m_{\chi}^2 \frac{M_{Target}}{(M_{Target} + m_{\chi})^2} (v_{esc} + v_E)^2$$

EI/WIMP	0,5 GeV	1 GeV	10 GeV	100 GeV	
He	0,7	2,2	26,5	46,4	keV
F	0,17	0,67	30,9	171,1	keV

arXiv:1101.5205v1

• Considering the low energy threshold this could revert to a limit in WIMP mass sensitivity

Thr	1 <u>keV</u>	2 <u>keV</u>	5 <u>keV</u>	15 <u>keV</u>	
He	0,62	0,93	1,72	4,52	GeV
С	0,99	1,46	2,51	5,18	GeV
F	1,23	1,79	3,01	5,95	GeV

G.Dho, E. Baracchini

ANGULAR SPECTRUM

• To have the angular spectrum in the lab RF, the integration must be modified to include the angle between recoil and Sun direction. I adapted the calculation from *DOI:10.1103/PhysRevD.66.103513*

$$\frac{dR}{dE_R d\cos \gamma} = \left(e^{-\frac{(v_{min} - v_E \cos \gamma)^2}{v_0^2}} - e^{-\frac{v_{esc}^2}{v_0^2}}\right) \Theta\left(\cos \gamma - \frac{v_{min} - v_{esc}}{v_E}\right)$$

• And rearranging

$$\frac{dR}{d\cos\gamma} = \int_{E_{thr}}^{\frac{1}{2}m_{\chi}r(v_{E}\cos\gamma+v_{esc})^{2}} \left(e^{-\frac{(v_{min}-v_{E}\cos\gamma)^{2}}{v_{0}^{2}}} - e^{-\frac{v_{esc}^{2}}{v_{0}^{2}}}\right) dE_{R}$$

If low integral extreme is less than high integral extreme

ANGULAR SPECTRUM

• To have the angular spectrum in the lab RF, the integration must be modified to include the angle between recoil and Sun direction. I adapted the calculation from *DOI:10.1103/PhysRevD.66.103513*

$$\frac{dR}{dE_R d\cos \gamma} = \left(e^{-\frac{\left(v_{min} - v_E \cos \gamma\right)^2}{v_0^2}} - e^{-\frac{v_{esc}^2}{v_0^2}}\right) \Theta\left(\cos \gamma - \frac{v_{min} - v_{esc}}{v_E}\right)$$

And rearranging

If low integral extreme is less than high integral extreme

ANGULAR SPECTRUM IN GALACTIC COORDINATES

• This allows us to calculate the specta of cosine in lab RF

• Assuming the detector in the centre of the Sun, the spectra can be transformed in the Galactic coordinates

9

SUMMARY

• INTRODUCTION

• FAKE EXPERIMENTS

- Theoretical Distributions
- PROCEDURE

• DISCRIMINATION TECHNIQUE

• Results

FAKE EXPERIMENT CREATION

• The experiment data will consist in a 2D angular histogram with the values obtained from the simulated events

• Background experiment

1.2.3.Expecting $\mu_{\rm b}$ background eventsExtract x events from Poisson(x, $\mu_{\rm b}$)For each event the 2D coordinates
are extracted from background
distribution

• Procedure for background+WIMP experiment

1. Same for background 2. Extract y events from Poisson(y,µ_s,m_x), with µ_s the expected WIMP events 3. For each event the 2D coordinates are extracted from signal distribution

15/06/2020

- Angular resolution σ_{a} is taken as 30x30 deg² and is <u>independent</u> on the energy of the recoil
- The histogram containing the data in **binned** so that each bin is $\pm 1\sigma_{a}$ (so twice as resolution)
- The angular resolution effect is applied to the simulation with a gaussian smear centred in zero and with σ_{a} as standard deviation
- Perfect head-tail recognition is considered
- Low energy threshold determines the minimum energy detectable, thus the angular spectrum shape
- High energy threshold determines is up to the end of the spectrum (200 keV recoils are expected to be visible and contained)
- The probability of hitting a specific element is considered in the simulation, taking into account the **gas mixture**

SUMMARY

• INTRODUCTION

- Fake Experiments
 - Theoretical Distributions
 - Procedure

• DISCRIMINATION TECHNIQUE

• Results

• We planned on using this test:

Partially already implemented

Well established and used technique

15/06/2020

- Basic working:
 - -You have two hypothesis H_0 (only background), H_1 (background +WIMP)
 - For each fake experiment you calculate the likelihood of data being from $H_0 (L_{H0})$ and the likelihood of data being from $H_1 (L_{H1})$
 - It is calculated the ratio of the two $\rm L_{r}$ = $\rm L_{H1}/L_{H0}$
 - If the simulation was of only background, we call it $L_{r,b}$, otherwise $L_{r,s}$

LIKELIHOOD RATIO TEST

- The distribution of $L_{r,b}$ (red) and $L_{r,s}$ (blue) are obtained from the repetition of fake experiments
- Given WIMP mass and μ_s under test, the most probable value of L_{r,s}, L_{r,s} (black), is found with a gaussian fit
- If the p-value of $L_{r,s}$, estimated on the red distribution, is less than the one tail 3 σ , then μ_s is enough to have 3 σ significativity

PROFILE LIKELIHOOD

• A very simplistic likelihood would be based on the poissonian expectation of the events

$$L_{H0} = \frac{\mu_b^{N_{evt}}}{N_{evt}!} e^{-\mu_b} \qquad \qquad L_{H1} = \frac{(\mu_b + \mu_s)^{N_{evt}}}{N_{evt}!} e^{-(\mu_b + \mu_b)}$$

• We can include the directional (angular) information, by multiplying by the probability of having obtained

data distributed as the histogram of the fake experiment

$$L_{H0} = \mu_b^{N_{evt}} e^{-\mu_b} \times \prod_{i=1}^{N_{bin}} P_{i,b}^{n_i} \frac{1}{n_i!}$$

n: number of events occurred in bin i;

 $\mathsf{P}_{i,x}$: probability of ending up in bin i according to distribution x

$$L_{H1} = (\mu_b + \mu_s)^{N_{evt}} e^{-(\mu_b + \mu_s)} \times \prod_{i=1}^{N_{bin}} (\frac{\mu_b}{\mu_b + \mu_s} P_{i,b}^{n_i} + \frac{\mu_s}{\mu_b + \mu_s} P_{i,s}^{n_i}) \frac{1}{n_i!}$$

G.Dho, E. Baracchini

LIKELIHOOD BUILDING

 At first approximation P_{i,x} will represent the probability due to the theoretical distribution the data are extracted from

- To match the input from simulation, the likelihood must take into account:
 - Migration of events from one bin to another due to resolution
 - Probability of the element hit

G.Dho, E. Baracchini

SUMMARY

• INTRODUCTION

- Fake Experiments
 - Theoretical Distributions
 - Procedure

• DISCRIMINATION TECHNIQUE

• Results

SENSITIVITY PLOT

EXPECTED KINEMATI LIMITS

DIRECTIONALITY EFFECT ON LIMITS

• If the likelihood with the simple Poissonian distribution is taken into account, the sensitivity worsens

• It may look a small effect on log-scale, but the directionality reduces the amount of events needed for discrimination (in this example) from 33 down to 16-22.

G.Dho, E. Baracchini

Possible Improvements

- It is understood that not all variables are considered and could be added:
 - Dependence of **angular resolution** on energy
 - Dependence of **head-tail recogntion** on energy
 - More precise expectation of the background shape
 - More precise effect of the background rejection
 - Combination of energetic and angular information

CAVEAT: these plots are not definitive and use different gas-mixture. Here just to exemplify what we need

15/06/2020

• All of these need input from other works (some are already available, others do not)

- More important and more often shown are the 90% confidence level limits.
- To obtain them, the Bayesian approach should help smoothing some calculation for the likelihood part, while exploiting the simulation structure already implemented.
- All the possible improvements will be added to the new approach.
- This work will be used to cross-check at the beginning the consistency of the two methods.
- Prof. Andrea Messina will help us in this task.

CONCLUSION

- A study on the 3 σ sensitivity of the CYGNO was performed.
- This study exploits the correct calculation of recoil spectra.
- It exploits the extended profile likelihood ratio in a frequentist approach.
- It has a solid simulation structure that can be used to generate data samples.
- Though not all variables are included, it has interesting results and further complications will be included in the future work on the CL with a Bayesian approach.

FORMULAS

$\frac{2\rho_0}{m_\chi^2 r}\sigma_p A^2 F^2 \left(\frac{\mu_A}{\mu_p}\right)^2 \frac{k_0}{2v_e k_1} \times$	
$\frac{v_e}{v_e} - \operatorname{erf}\left(\frac{v_{min}(E_R) - v_e}{v_0}\right) - \frac{4v_e}{\sqrt{\pi}v_0} e^{-\frac{v_{esc}^2}{v_0^2}} \right] \qquad \qquad v_m$	$v_{esc} - v_e$
$\operatorname{rf}\left(\frac{v_{min}(E_R) - v_e}{v_0}\right) - \frac{2}{\sqrt{\pi}v_0}(v_{esc} + v_e - v_{min})e^{-\frac{v_{esc}^2}{v_0^2}} \int v_{es}$	$v_{sc} - v_e < v_{min} < v_{esc} + v_e$
•	un > 0esc + 0e
A _M Molar mass of molecule of gas	$N_{Z}^{}$ Number of atoms of an element in gas molecule
𝔐	M _A Target particle mass
A Mass number of the element	μ_A Reduced mass of element
V _e Lab velocity	$\mathbf{V}_0^{}$ Galactic thermal dispersion velocity
V _{esc} Galactic escape velocity	F Form factor
${f k}_0^{}$ Normalization of regular velocity distrib	pution $\mathbf{k}_0^{}$ Normalization of cut velocity distribution
21	15/06/2020
	$\frac{2\rho_{0}}{m_{\chi}^{2}r}\sigma_{p}A^{2}F^{2}\left(\frac{\mu_{A}}{\mu_{p}}\right)^{2}\frac{k_{0}}{2v_{e}k_{1}}\times$ $\frac{v_{e}}{2}\right) - \operatorname{erf}\left(\frac{v_{min}(E_{R})-v_{e}}{v_{0}}\right) - \frac{4v_{e}}{\sqrt{\pi}v_{0}}e^{-\frac{v_{e}^{2}e_{e}}{v_{0}^{2}}}\right] v_{n}$ $\operatorname{rf}\left(\frac{v_{min}(E_{R})-v_{e}}{v_{0}}\right) - \frac{2}{\sqrt{\pi}v_{0}}(v_{esc} + v_{e} - v_{min})e^{-\frac{v_{e}^{2}e_{e}}{v_{0}^{2}}}\right] v_{e}$ v_{n} $A_{M} Molar \text{ mass of molecule of gas}$ $m_{\chi} Dark \text{ matter particle mass}$ $A Mass \text{ number of the element}$ $V_{e} Lab \text{ velocity}$ $V_{esc} Galactic \text{ escape velocity}$ $k_{0} Normalization \text{ of regular velocity distributed}$ 21

G.Dho, E. Baracchini

BACKUP

F 10 **GeV**

WIMP recoil in Galactic coordinate

G.Dho, E. Baracchini

6

18/05/2020

F 10 GeV

Angular distribution in lab RF

G.Dho, E. Baracchini

18/05/2020

F 10 **GeV**

G.Dho, E. Baracchini

18/05/2020