# **NEPTUNE:**

Nuclear process-driven Enhancement of Proton Therapy UNravElled

# WP1 - Modeling

June, 19 2020 A Attili, E Scifoni, F Tommasino, G Petringa, P Cirrone, et al.



#### **NEPTUNE WP1: milestones & deliverables**



- Goal: finalize the analysis of the contribution of alpha particles on the radiobiological enhancement: Is possible to reproduce the observed decrement of cell survival by using hadrontherapy models + alpha contribution only?
- First step: MC simulations implementation +
  Radiobiological modeling (modified MKM and LEM
  models to account alpha short ranges) to carry on a
  simultaneous global fit of alpha production CS to every
  clonogenic assays, possibly using all available reaction
  channel for alpha production.



- Clonogenic assays @ LNS and CNAO DU145 and PANC-1 cells irradiated w and w/out Boron (BSH and BPA). Six positions along the SOBP in total, corresponding to different proton energy conditions.
  - WP4: survival raw data (including x-ray irradiation) and dose measurements with uncertainties.



- Clonogenic assays @ LNS and CNAO DU145 and PANC-1 cells irradiated w and w/out Boron (BSH and BPA). Six positions along the SOBP in total, corresponding to different proton energy conditions.
  - WP4: survival raw data (including x-ray irradiation) and dose measurements with uncertainties.
- Spectra of protons evaluated with MC @ the same cell depths along the SOBP (LNS and CNAO beamlines)
  - WP1: Geant4 Simualtion for LNS beamline
  - WP3: [...] (eventuali simulazioni già fatte per supporto alle misure microdosimentriche @ LNS)
  - WP1: (simulazioni di già fatte per supporto alle misure clonogeniche al CNAO)



## proton energy spectra for a proton beam (60 MeV) in a water phantom





## proton energy spectra for a proton beam (200 MeV) in a water phantom





## Cross sectional data for different interaction channels (TENDL + experiments)



- CS data theoretical & measured alpha production rate (all available channels)
  - WP1: [Geant4/EXFOR/TENDL]
  - WP3: (dati sperimentali normalizzati di alpha production rate)

## Cross sectional data for different interaction channels (TENDL + experiments)



- CS data theoretical & measured alpha production rate (all available channels)
  - WP1: [Geant4/EXFOR/TENDL]
  - WP3: (dati sperimentali normalizzati di alpha production rate)
  - Link with FOOT/MOVE-IT?

# differential Cross Sections $\sigma_{pf}$ (TENDL)





# Range → Weighted spectra (with range dependent weight factor W,





## S1: MC Simulations with Geant4 - $\alpha$ + Li production by Neutron mediation

**Neutron Capture Enhanced** Particle Therapy (NCEPT): central hypothesis is that if a sufficient thermal neutron fluence is generated during proton or heavier ion therapy, it can be exploited therapeutically via the administration of a suitable non-toxic neutron capture agent containing 10B or 157Gd (Safavi-Naeini et al. 2018)

$$^{10}\text{B} + n_{th} \rightarrow [^{11}\text{B}]^* \rightarrow \alpha + {}^{7}\text{Li} + \gamma(2.31 \text{ MeV})$$

$$^{157}\mathrm{Gd} + n_{th} \rightarrow [^{158}\mathrm{Gd}]^* \rightarrow ^{158}\mathrm{Gd} + \gamma + 7.94 \mathrm{~MeV}$$

| Target<br>Depth (mm) | Primary Ion            | Thermal neutron fluence per GyE<br>primary dose (n/cm²/GyE) |                      |                      |
|----------------------|------------------------|-------------------------------------------------------------|----------------------|----------------------|
|                      |                        | Minimum                                                     | Mean                 | Maximum              |
| 100-150              | Proton <sup>12</sup> C | $5.96 \times 10^{8}$                                        | $7.79 \times 10^{8}$ | 9.06×10 <sup>8</sup> |
|                      |                        | $2.86 \times 10^{8}$                                        | $3.34 \times 10^{8}$ | $3.60 \times 10^{8}$ |
| 140-190              | Proton <sup>12</sup> C | $6.26 \times 10^{8}$                                        | $8.82 \times 10^{8}$ | $1.09 \times 10^{8}$ |
|                      |                        | $3.17 \times 10^{8}$                                        | $4.08 \times 10^{8}$ | $4.68 \times 10^{8}$ |

Thermal neutron fluences obtained for each target volume and treatment plan, assuming a target volume average proton or heavy ion biological dose of 1 GyE. (Safavi-Naeini et al. 2018)

## **Comparing proton mediated vs neutron mediated mechanisms**



Tabbakh, F., & Hosmane, N. S. (2020). Enhancement of Radiation Effectiveness in Proton Therapy: Comparison Between Fusion and Fission Methods and Further Approaches. Scientific Reports, 10(1), 1–12.

- Clonogenic assays @ LNS and CNAO DU145 and PANC-1 cells irradiated w and w/out Boron (BSH and BPA). Six positions along the SOBP in total, corresponding to different proton energy conditions.
  - WP4: survival raw data (including x-ray irradiation) and dose measurements with uncertainties.
- Spectra of protons evaluated with MC @ the same cell depths along the SOBP (LNS and CNAO beamlines)
  - WP1: Geant4 Simulations for LNS beamline
  - WP3: [...] (eventuali simulazioni già fatte per supporto alle misure microdosimentriche @ LNS)
  - WP1: (simulazioni di già fatte per supporto alle misure clonogeniche al CNAO)
- Boron uptake and internalization
  - WP2 (, WP4?): [...] (misure per BSH e BPA usati negli esperimenti di sopravvivenza cellulare.)





 Objective: Simultaneous global fit of total and differential CS to every clonogenic assays





• **Objective:** Simultaneous global fit of total and differential CS to every clonogenic assays



