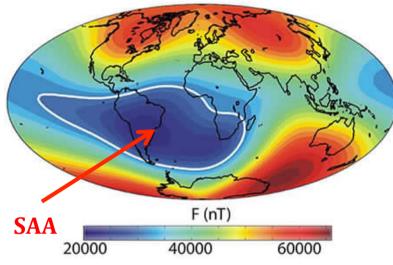
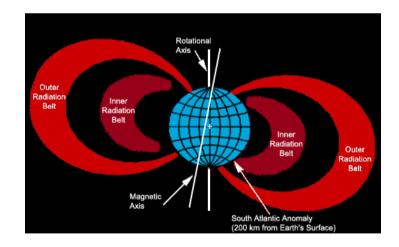
Consiglio dei laboratori Preventivi 2021 7 Luglio 2020

SAMADHA

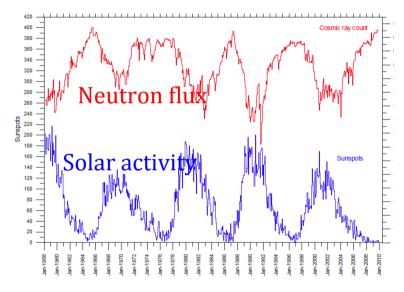
South Atlantic Magnetic Anomaly Dosimetry at High Altitude

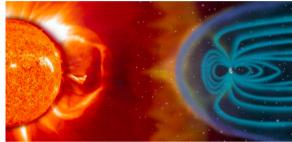

26 participants in 5 INFN sections <u>Torino</u>, Trieste, Frascati, Firenze, Napoli

LNF contribution

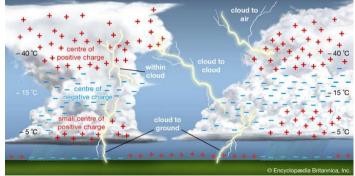

<u>Roberto Bedogni (</u>30%), Claudio Cantone (30%), Alessandro Lega ^{laureando} (100%), Jose-Maria Gomez-Ros ^{associato} (50%),

Geomagnetic field South Atlantic Anomaly and Van Allen belts


- Earth's magnetic field can be approximated by a dipole
 - The dipole centre is displaced by about 500 km with respect to the Earth center
- This causes a region with lower geo magnetic field: the South Atlantic Anomaly.
- Van Allen belts are two toroidal regions where the Earth's magnetic field trap energetic electrons (outer) and protons (inner) in a "bouncing" periodical trajectory
- Their altitude is minimum (200 km) in SAA
- Pamela measured protons up to few GeV. The highest energies were found in SAA.
- Satellites in low altitude orbit in SAA experienced higher astronauts doses and damage to the instrumentation.

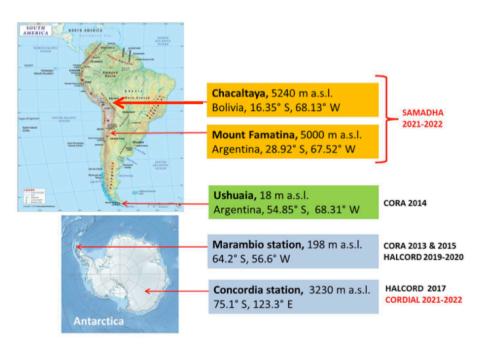


Particle precipitations in the atmosphere


- Van Allen belts properties and related precipitation of particles in the atmosphere depend on **the solar activity**
- Secondary neutrons from cosmic rays are inversely correlated with solar activity (25th solar cycle just started).

Magnetic storms perturb the belts and may increase particles precipitation in the atmosphere

- Electric fields in atmosphere during thunderstorms accelerate charged particles from cosmic rays air showers, causing increases in secondary neutrons.
- These phenomena are not well understood. No data above 4300 m elevation.


SAMADHA scientific objectives

Secondary neutrons produced by the interaction of cosmic particles with Oxygen and Nitrogen in atmosphere **account for about one half of the effective dose** received by humans at high-altitudes (ex. commercial flights 5000-7000 m).

SAMADHA is planning ambient dosimetry campaigns at high-altitude in SAA:

Chacaltaya Lab (5240 m) Bolivia Mt. Famatina (5000 m) Argentina

- Study the relation between dose rate and space weather / atmospheric phenomena in a region where few or no data are available
- Complement dosimetric measurements obtained in other locations by other projects: CORA 2013-2015, HALCORD (2019-2020), and CORDIAL (PNRA 2021-2022).

Instruments

Direct measure of the cosmic-ray induced secondary fields:

Water filled Neutron spectrometes (WAFINES) (25 meV < E_n < 5 GeV)
Various rem meters
Portable gamma dose meters
LET Spectrometer
Gamma ray NaI(Tl) detectors

Passive dosemeters

Etched-track detectors ²⁰⁹Bi fission stack for high-energy neutrons Thermoluminescence detectors TLD 100, 600 e 700

Electric and magnetic field instruments

In-situ equipment:

Neutron Monitor and Solar Neutron Telescope (Chacaltaya)

Task assignment

TorinoCosmic rays, space weather, atmosphere physics,
measurements with portable gamma and neutron
instrumentsTriesteGeophysics, Sun physics, space physics, satellite data, passive
dosimetryFrascatiNeutron physics, real-time spectrometric measurementsFirenzeCosmic rays and simulationsNapoliPassive thermo-luminescence dosimetry

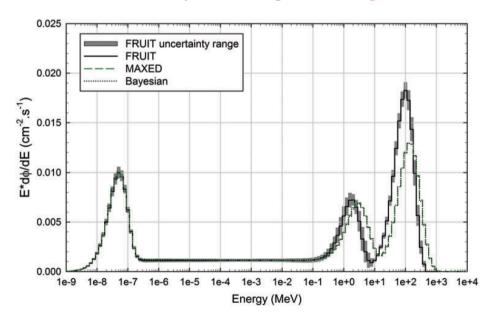
Schedule

2021 January-September

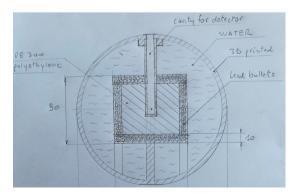
Equipment design / set up / purchase Testing (*Testa Grigia 3480 m* and *Zugspitze 2650 m*)

2021 September Shipment to South America

2021 October - 2022 December Measurement campaigns / Analysis



Laboratorio Testa Grigia Cervinia 3480 m a.s.l. 46.0° N, 7.7° E



LNF contribution

- A critical step forward, with respect to previous ambient neutron campaigns, would be measuring the energy distribution of the neutron field, ranging from millieV to few GeV (12 orders of magnitude).
- Bonner spheres are the traditional tool for that, BUT the remote location of the highelevation labs (and the high shipment costs) require compact and light instruments
- WAFINES: Water filled neutron spectrometer: 3D printed spherical shells to fill with water.
- WAFINES will work as an usual 8-spheres highly sensitive BSS with ³He counters (3 cm³ x 10 bar), leading to one spectrum every one-two days

Richieste

Servizi LNF: SPCM 1.5 MU di progettazione e 3D print

Richieste LNF alla csn5 per il 2021 (sui 90 k€ totali)

- 22.5 k€ consumi (di cui 11k€ solo per i rivelatori ad ³He)
- 3 k€ spedizioni materiali
- 9 k€ totale missioni

