
PEROV R&D for photodetectors based on Organo-Metal Halide Perovskite material

- LNF-INFN (Resp. Naz.)
- INFN Sezione di Roma 1 and Università di Roma "La Sapienza"
- Uniroma2 Dipartimento Ingegneria Elettronica
- UniMi– Dipartimento Chimica
- CNR NanoTec, ISR, ISM

Organo-Metal Halide Perovskite (OMHP)

- Organo Metal-Halide Perovskites are a class of hybrid organic-inorganic semiconductor materials with a perovskite unit-cell structure ABX₃ with
 - $A = CH_3NH_3^+, B = metallic cation (Pb^{2+}),$ X= halide anions (Cl⁻, Br⁻, l⁻)
- Opto-electronic properties combine advantages from organic and inorganic semiconductors

- Intense R&D in the last ~9 years
 - OMHP are emerging as new generation photovoltaic material
 - performance comparable to commercial Si cells
 - promising candidate as large area and flexible sensitive photodetectors
 - \rightarrow interest for HEP detectors !

OMHP properties

OMHPs combine the advantages of inorganic and organic semiconductors.

Organic semiconductors:

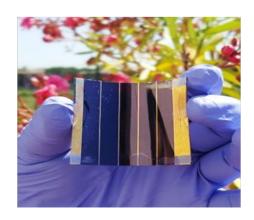
- Disordered system
- Localized electronic states
- Hopping transport \Rightarrow low mobility
- Low cost, low temperature processing
- Can be solution processed
- Scalable to large area

Inorganic semiconductors:

- Ordered periodic crystal \Rightarrow band structure
- Delocalized Bloch states
- band transport \Rightarrow high mobility
- Usually wafer based technology
- Costly, high temperature processes

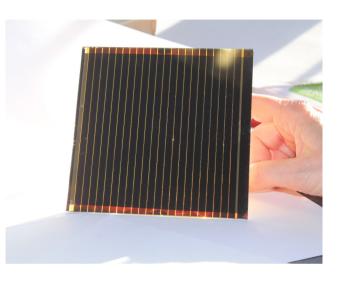
		Silicon	CH ₃ NH ₃ Pb(I,Br) ₃
Density		2.33 g/cm ³	4.15 g/cm ³
Band gap (e	V)	1.12 (indirect)	1.5-1.6 / 2.24 (direct)
Mobility electrons	1400	< 70/190	
(cm²/Vs)	holes	450	< 160/220
Absorption (cm ⁻¹)		< 10 ⁴	> 4x10 ⁴
Threshold energy for impact ionization (eV)		1.2	~2 / 2.5 (estimated)
Mean free p	oath (nm)	≤ 100	~100 (theory)

- OHMP band gap tunable changing halide (I,Br,Cl)
- OMHP contain highly mobile defects and have instabilities issues


OMHP advantages for particle detectors

Most attractive feature of OMHP files for detectors for particle physics experiments

- 1. possibility to build large area device
- 2. flexible devices
- 3. thinner sensors wrt silicon-based sensors, due to higher Z


Interesting for calorimetry, neutrino/dark matter experiments

Active Area = 12 cm^2 ,

Flexible device

Active Area=110cm² Efficiency=13.4%

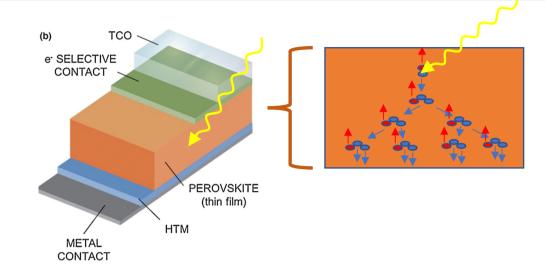
large area device

Fabrication through solution processes

State of art OMHP photodetectors

- Several devices developed, with different contact interfaces and architectures
- Two classes developed:
 - Devices without gain, reasonably fast
 - Devices with gain, slow
 - the underlying mechanisms are still not completely understood.
 - proposed so far is the trap-assisted charge-tunneling

film device with O(ns) time resolution and gain not yet developed

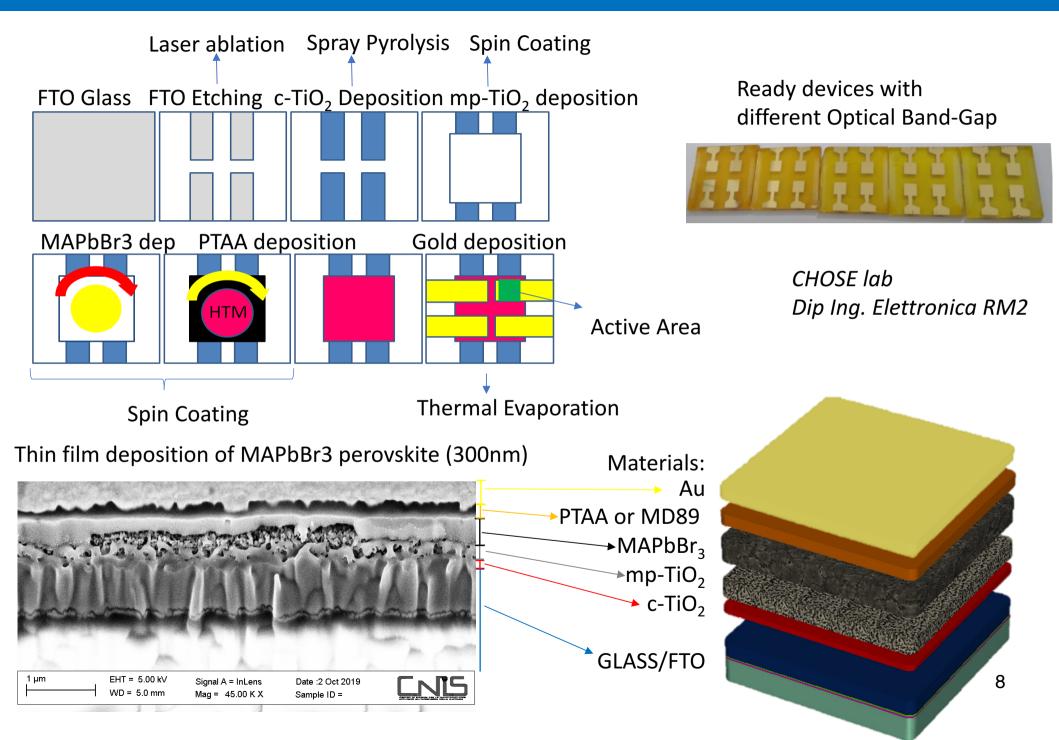

Device architecture	R [A W ⁻¹]	D*×10 ¹² [Jones]	EQE [%]	On/off ratio	G [×10³]	LDR [dB]	NEP [pW cm ⁻²]	t _{rise} /t _{decay} [ms]	Ref.
Pt/MAPbCl ₃ /Ti/Au	0.0469	0.012	-	-	-	-	-	24/62	[145]
FTO/ETL/ MAPbl ₃ /HTL/Au	620	-	$2.4 imes 10^5$	-	2.4	-	-	100-200	[146]
ITO/HTL/perovskite/ETL/Al	-	7.4	≈90	-	-	94	0.6	1.2×10 ⁻⁴	[92]
ITO/perovskite/MoO ₃ /Ag	242	-	-	-	0.489	85	0.18	0.01/0.006	[35]
Au/perovskite/Au	320	-	-	104	0.01-0.1	-	-	<0.01	[25]
ITO/HTL/perovskite/ETL/LiF/Al	-	>1	50-70	-	-	170	200	0.005/0.003	[147]
ITO/TiO ₂ /perovskite/P3HT/MoO ₃ /Ag	0.339	4.8	84	-	-	100	-	≈10 ⁻⁴	[148]
ITO/perovskite/ITO	4×10^3	>10	-	-	>10	-	-	0.025	[97]
ITO/ MAPbCl ₃ /ITO	18	1	-	-	0.1	-	-	0.001	[95]
ITO/HTL/perovskite/ETL/Al	0.321	-	60	-	-	84	-	0.004/0.003	[78]
Pt/perovskite/Pt	-	0.13	-	104	-	-	-	90/20	[81]
ITO/perovskite/ITO	1640	10	10 ⁵	-	2.5	70	-	0.03/0.02	[149]
Au/perovskite/Au	2.36	1.5	639	>103	-	-	-	<4	[150]
Au/perovskite/Au	10.33	-	-	105	-	-	-	0.02/0.01	[62]
Au/ MAPbl ₃ /Au	953	-	$2.2 imes 10^5$	224	-	76	-	0.07/0.06	[100]
ITO/ MAPbl ₃ /ITO	3.49	-	1.2×10^3	324	-	-	-	<200	[80]
ITO/HTL/perovskite/ETL/Al	-	100	-	-	-	100	4.6	6×10 ⁻⁴	[32]
Au/perovskite/Au	$1.9 imes 10^4$	-	$4.9 imes 10^6$	-	53	-	-	<450	[151]
Au/ MAPbl ₃ /Au	7.92			130	Adv. So	<i>ci.</i> 2018,	5, 17002	256<200	[152]

PEROV Goals in 2020 (Dot Gr5)

1) **Observation or exclusion of internal avalanche multiplication** in OMHPs

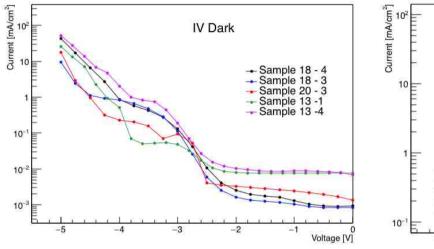
- not yet observed so far
- no first principle preventing it
- expected to be a fast process
- may be masked by mobile ions
- Methodology
 - purchase/fabricate single OMHP mono crystals of thickness 1μ m 10 um
 - thickness not limited by purity
 - Less defects / traps states compared to films
 - measure gain vs Vbias with led
 - compare with gain in OMHP films

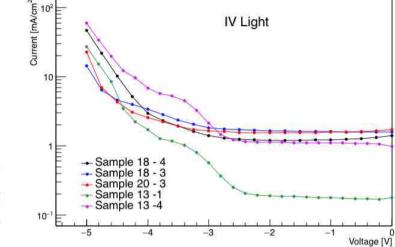
2) Radiation hardness under synchrotron radiation at DAFNE



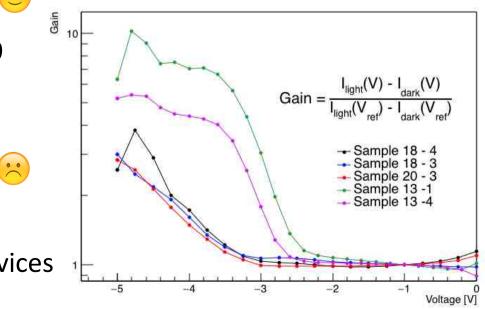
Current Status

- 1. Film-based devices:
 - fabrication, characterization, simulation
- 2. Single crystals devices:
 - started collaboration with Dip. Chimica of Milano and CNR NANOTEC
 - will join PEROV in 2021
 - first test on single crystals fabrication
- 3. Radiation Hardness studies not yet done


- Severe limitations from covid-19
 - all labs closed during lockdown
 - currently not all labs restarted. Generally limited availability

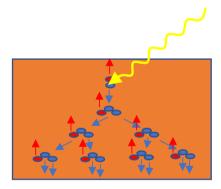

Film-based devices production

IV and gain measurement on 300nm films


Setup: pulsed LED varying V_{bias}

PEROV Preliminary

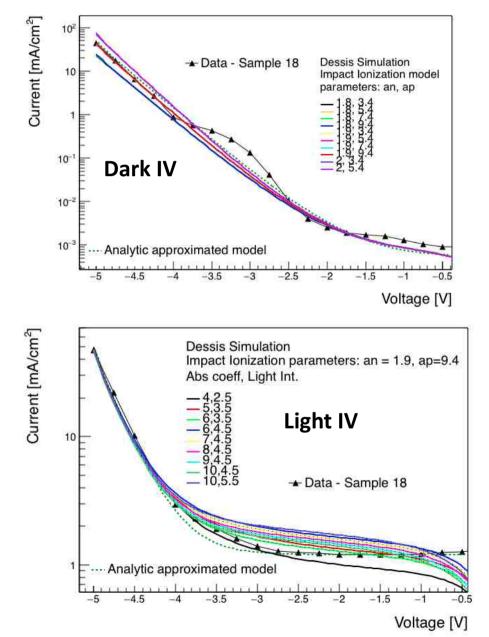
- Gain observed in a fraction of devices
 - •• Not dependent on different hole transport layers (HTL), PTAA or MD89
- Significant differences among devices and pixels on the same devices
 - SEM and AFM to understand morphological differences among devices



Observed gain could be explained by two different mechanisms:

- Mobile ions in OMHPs (I, Br and vacancies) move in electric field and accumulate at interfaces ⇒ modification of injection barrier, tunneling
 - slow process O(ms)

- 2. Impact Ionization (i.e. avalanche generation)
 - Generation Rate $G = \alpha_n j_n + \alpha_p j_p$
 - Ionization coefficient $\alpha_{n,p}$ = inverse of mean free path
 - j_n, j_p electron and hole flux
 - fast process O(ns)
 - Overstraeten de Man model:
 - α (E) = $\gamma ae^{-\gamma(T)b/E}$ E= electric field
 - To compare with data: vary or fit *a*, *b* parameters, using TCAD simulation and analytical models

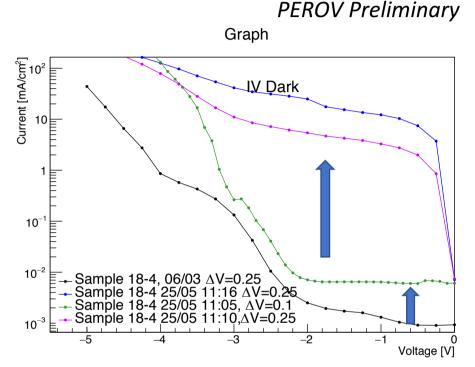

Results interpretations

PEROV Preliminary

- Dark IV:
 - Reasonable agreement between data and simulation, both using TCAD simulation and analytic model

- Light IV:
 - Use parameters best modelling Dark IV
 - Uncertainty on light intensity and absorption coefficient taken into account

Modelling of ion mobility on going

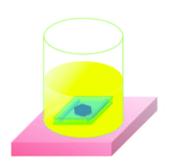

Degradation with reverse bias 300nm films

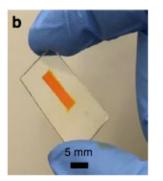
Degradation observed under reverse bias:

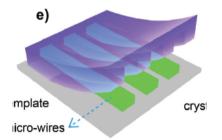
- after time 3 months \rightarrow larger dark current
- after finer ΔV scans \rightarrow ohmic behavior

- Instability of OHMP is a known and hot topic for solar cells application
- Study on stability under reverse bias at large V_{bias} for photodetector application not yet studied so far

Need to systematically study the stability under reverse bias before any radiation hardness study

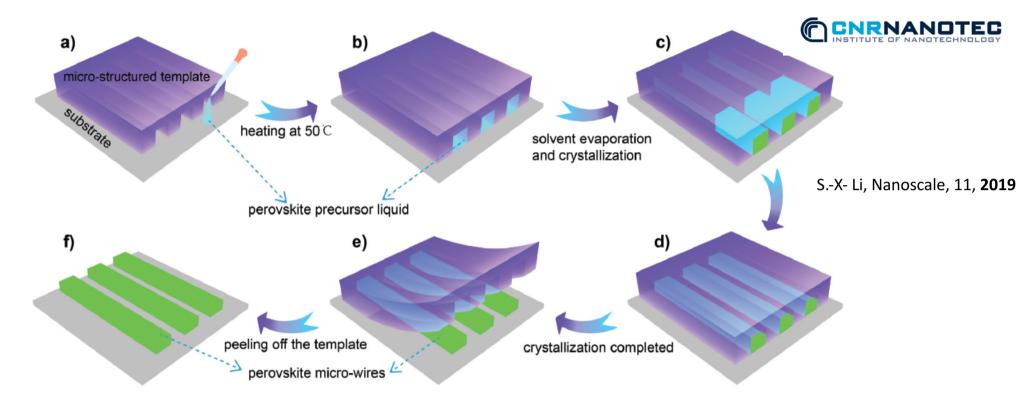



Single crystal productions


Complementary techniques

- 1. Serial seeding technique
 - Good for very large bulk OMHP crystals
 - need cut along proper cleavage crystallographic planes to fit the device shape and thickness requirements
- 2. confined growth technique
 - growth directly conductive substrate
 - microcrystalline layer with the desired thickness.

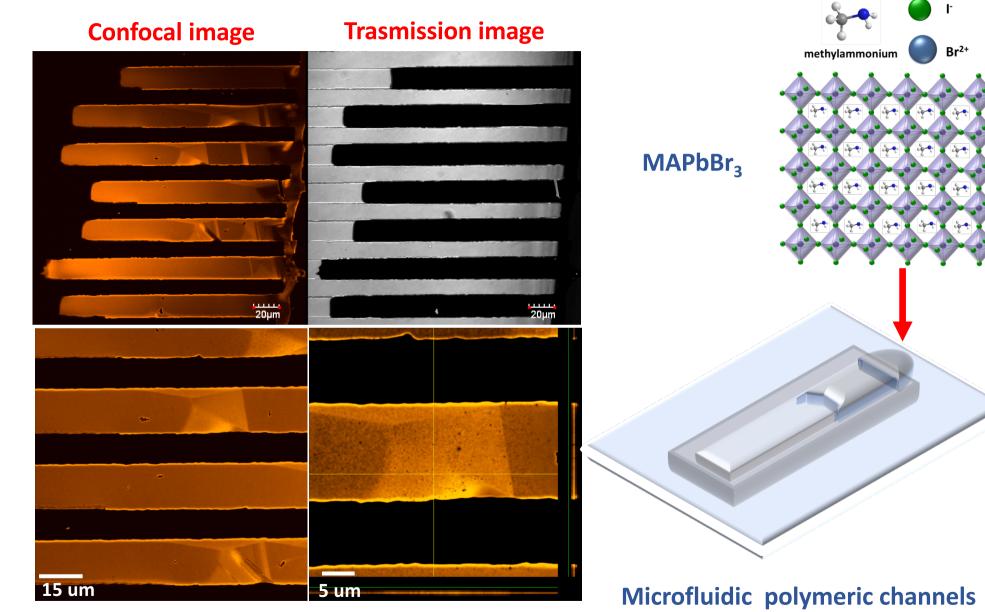
3. Microfluidic-assisted crystallization next 3 slides



Collaboration with

- Chemistry Department of Università degli Studi di Milano for techniques 1) and 2)
 - Delays for covid-19, restart in September
- Collaboration with CNR NANOTEC technique 3)
 - Activity recently re-started; preliminary results in the next slides

Microfluidic-assisted perovskite crystallization



- manipulation of fluids at the microscale
- high control over the crystallization kinetics

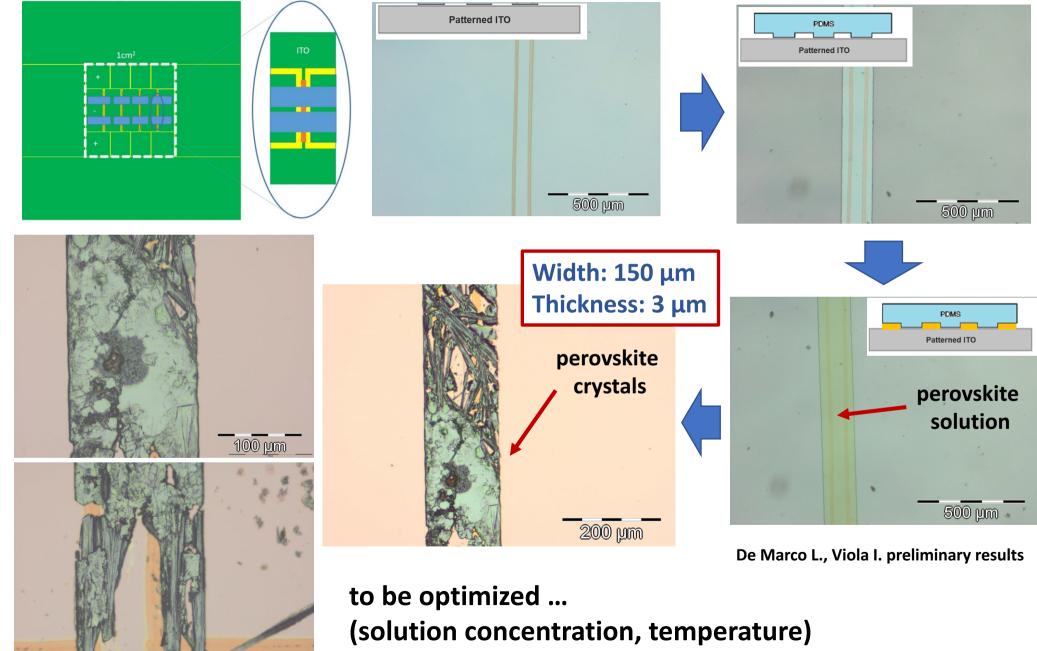
 Excellent uniformity, crystallinity and structural quality due to the reduced density of defects and grain boundaries

- Allow perovskite crystallization on functional device
- Reduce significant batch-to-batch variability
- Allow patterning over large area, on nonplanar surfaces, with submicrometer resolution

Preliminary experimental results : MAPbBr₃ microcrystals

HR 3D – Z stack projection with profiles

De Marco L., Viola I. preliminary results


w= 15 μm; h= 1 μm

Preliminary experimental results: MAPbl₃ on patterned ITO

Layout designed at CHOSE for PEROV

100 µm

RNAND

2021-2022 plan

- Extend project to 2 years
 - complete 2020 program
 - new studies emerged from 2020 results
 - more time to optimize single crystal productions
- Plan
 - Proof/Exclusion of Avalanche Multiplication
 - Test stability under reverse bias
 (before radiation hardness)
 - Separate effect from avalanche multiplication (fast) from effect of Ion mobility (low)
 - \circ Timing characterization
 - Low temperature measurement
 - SEM/AFM characterization
 - Radiation hardness

Mllestones

- 04/2021: Monocrystal and film fabrication and characterization
- 10/2021: Stability of monocrystals/films under reverse bias
- 02/2022: Proof/Exclusion of Avalanche Multiplication in films and/or mono crystals
- 06/2022: Radiation Hardness study
- 12/2022: Optimized layouts

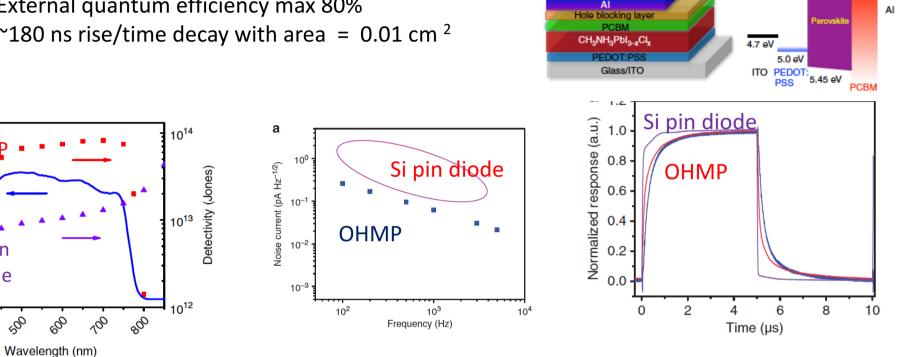
new

Man power for 2021

M. Testa LNF	0.2	Samples characterization, coordination
A.De Santis LNF	0.2	Radiation hardness
S. Morganti RM1	0.1	Stability measurements, characterization with sources
C.Rovelli RM1	0.1	Stability measurements, characterization with source
M. Auf der Maur - Dip Ing Tor Vergata	0.2	Simulation, Theory
F. Matteocci - Dip Ing Tor Vergata	0.1	Fabrication, characterization
Al. Di Carlo – CNR ISM	0.1	Theory, Supervision
Silvia Rizzato - Dip Chimica Unimi	0.2	Chemical synthesis and crystallization
Leonardo Lo Presti - - Dip Chimica Unimi	0.2	Crystallographic characterization
llenia Viola – CNR Nanotec	0.25	Microfluidic-assisted synthesis of perovskite single crystals
Luisa De Marco – CNR Nanotec	0.1	Microfluidic-assisted synthesis of perovskite single crystals
Simona Sennato – CNS ISC	0.15	SEM/AFM characterization

Financial request for 2021 year

	Scope	Type of request	Cost
Roma2, UNiMi, CNR (associati a LNF)	 Fabrication of single OMHP crystal Fabrication of OMHP films 	Consumables	2 kE
CNR ISC (associato a LNF)	Probes for AFM	Consumables	500 Eu
Roma1	 transimpedance amplifier for characterization with low intensity sources 	Consumables	2kE
CNR NanoTec (associato a LNF)	 Realization of substrates at CHOSE RM2 for microcrystals from Lecce, with both experts 	Travel from Lecce to Roma2	500 Eu


Backup

Facilities

	Facilities/Services	Activity
Roma2	CHOSE laboratories	Fabrication of OMHP films and characterization with led
		Theory expertise in OMHP
Roma1	Lab Segre' Equipment for test with led/laser/radioactive sources	Stability measurements, characterization with radioactive sources, Simulation
LNF	DAFNE, X rays tubes	Radiation hardness
CNR Nanotec	Soft and Living Matter Laboratory, Rome and HOPV Laboratory, Lecce	Microfluidic-assisted synthesis of perovskite single crystals
CNR ISC	AFM, SEM	Morphological characterization
Dip.Chimica UniMi	Laboratories at Chemistry Department	growth and crystallographic characterization of OMHP single crystals

State of art: OMHP photodetector (no gain)

- Example of device with no gain: (*) ٠
 - External quantum efficiency max 80%
 - ~180 ns rise/time decay with area = 0.01 cm^2 •

а

Dou, Y. Yang e al Nat. Commun. 2014, 5, 5404.

3.95 eV 4.0 eV

4.2 eV

Other devices with no gain

ŝ

600

b

EQE % 60

100

80

40

20

0

300

OHMP

Si pin

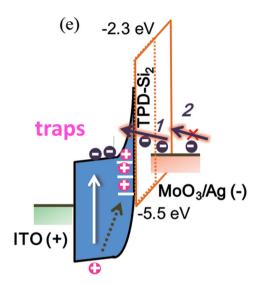
diode

0

Structure	Bia [V]	D^* [cmW ⁻¹ Hz ^{1/2}]	Rising/falling time	Stability	Ref.
PEDOT:PSS/MAPbI _{3 - x} Cl _x /PCBM	0	3×10^{11}	180/160 ns	(*)	33
OTPD/MAPbI ₃ /PCBM/C ₆₀	0	7.4×10^{12}	120 ns		37
PTAA/MAPbI ₃ /C ₆₀ /BCP	0	7.8×10^{12}	0.95 ns		41
PTAA/MAPbBr ₃ SC/C ₆₀ /BCP	0	1.5×10^{13}	100 ns		39
PTAA/MAPbI3 SC/C60/BCP	0	1.5×10^{13}	295 ns		39
PTAA/PEIE/CsPbIBr ₂ /PCBM/BCP	0	9.7×10^{12}	20 ns	>2000 h	25
PTAA/PEIE/CsPbBr ₃ /PCBM/BCP	0	6.0×10^{12}	62 ns	>2000 h	25

State of art: OMHP photodetector (gain)

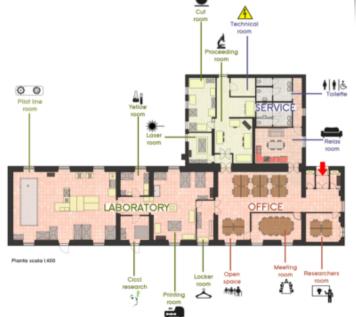
- So far, photoconductive gain observed:
 - under illumination, charges injected by the electrodes under an applied bias, besides the photogenerated charges.
- the underlying mechanisms are still not completely understood.
 - proposed so far: the trap-assisted charge-tunneling
- This gain is associated to slow time performance O(ms)

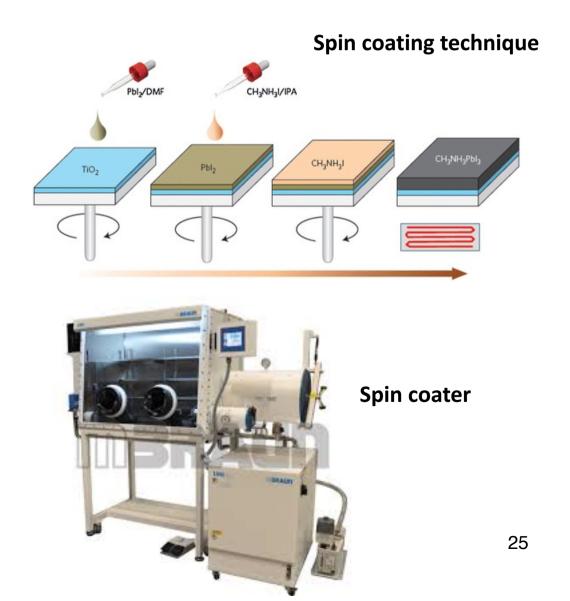

Matreial	Bia [V]	D^* [cmW ⁻¹ Hz ^{1/2}]	Rising/falling time	EQE	Ref.
FA _{0.85} Cs _{0.15} PbI ₃ film	0	2.7×10^{13}	45/91 ns		67
MAPbCl ₃ single crystals	15	1.2×10^{10}	24/62 ms		54
MAPbI ₃ single crystals	3		74/58 μs	595%	55
MAPbI ₃ nanowires	1	2.0×10^{13}	<0.1 ms		58
MAPbI ₃ film	3		100/100 ms	1190%	8
MAPbCl ₃ single crystals	5	10 ¹²	1 ms		27
CsPbBr ₃ nanocrystals	3	6.1×10^{10}	1.8/1 ms		45
CsPbI ₃ nanocrystals	1		24/29 ms		28
MAPbBr _{3 – x} I _x film	10		20 µs		7
CsPbBr ₃ nanoparticles	2	1.68×10^{9}	0.2/1.2 ms		44
CsPb(Br/I) ₃ nanorod networks	8		680/660 ms		59
CsPbBr ₃ nanosheets	5		19/25 µs	54%	46
CsPbBr ₃ thin films	6	9×10^{12}	430/318 μs	16 700%	43
CsPbBr3 nanoarrays	5		21.5/23.4 µs		3
CsPbI ₃ nanoarrays	1	1.57×10^{12}	292/234 ms	16%	60
CsPbBr ₃ nanosheets	10		16/380 μs	7488%	29
CsPbBr ₃ nanoplatelets	1.5	7.5×10^{12}	0.6/0.9 ms	$10^{4}\%$	56
CsPbBr ₃ bulk single crystals	0	1.7×10^{11}	230/60 µs		49
CsPbBr ₃ bulk single crystals	5		69/261 µs	460%	47
CsPbBr3 microcrystals	3	1×10^{13}	0.5/1.6 ms	$2 \times 10^{7}\%$	50
CsPbBr3 nanowires	3		252/300 µs		62
CsPbI3 nanorods	2	5.17×10^{13}	50/150 µs	$9 \times 10^{5}\%$	63

State of art: OMHP photodetector (gain)

- So far, photoconductive gain observed:
 - under illumination, there are charges injected by the electrodes under an applied bias
 - Schottky junction \rightarrow ohmic contact
 - the underlying mechanisms are still not completely understood.
 - proposed so far is the trap-assisted charge-tunneling:
 - Traps induces band bending in the perovskite layer close to one of the electrodes
 - \rightarrow Reducing the Schottky junction thickness
 - \rightarrow allowing the injection of the opposite charges under reverse bias.

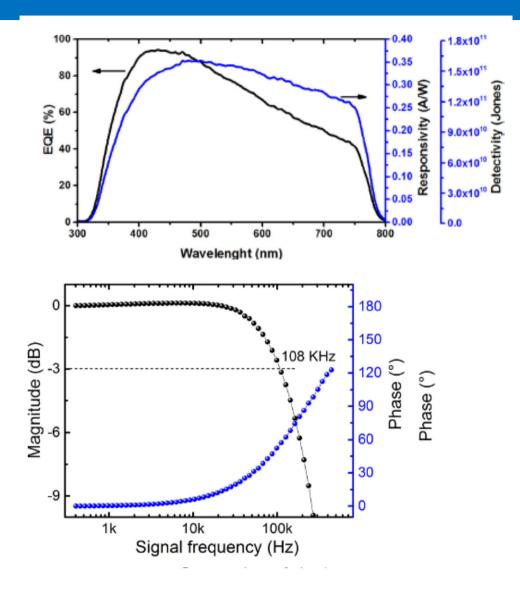
Examples: ITO/MAPbl₃/MoO 3 /Ag


- Gain ~490
 - τ_{rise/decay} ~10 us
- Area 6 mm^2 .



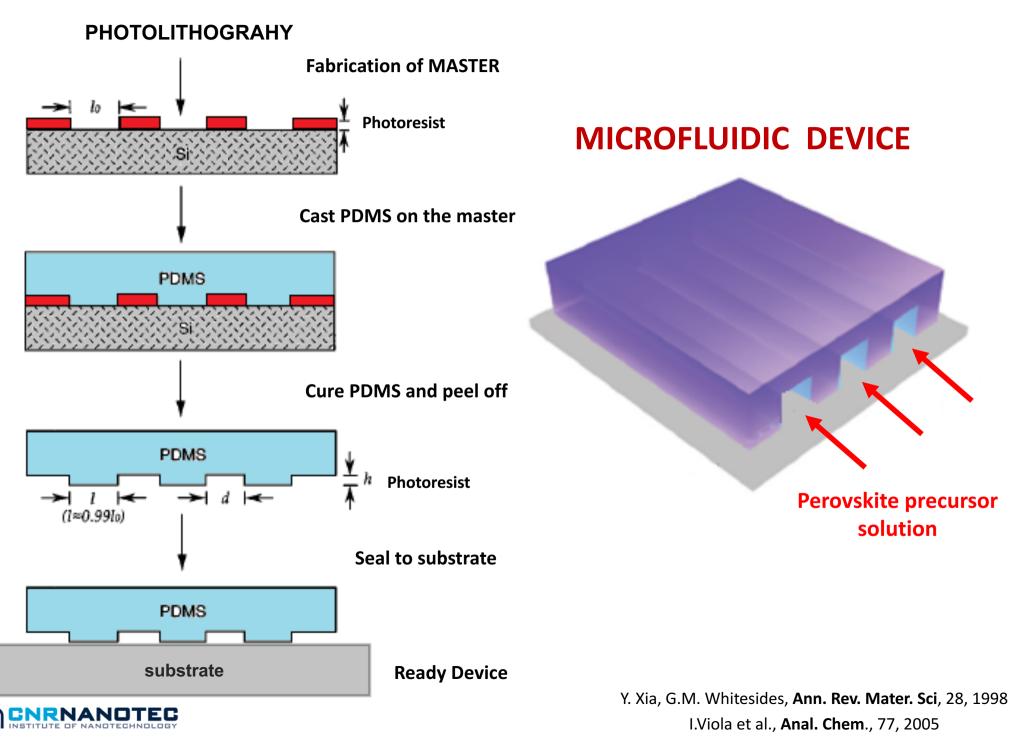
CHOSE Lab, Roma2 Dip Eng. Elettr.

- Devices will be fabricated in the CHOSE laboratories of Roma2 Electronic Engineering Dep.
- **No cost** for film production (only consumables)

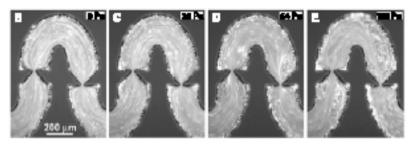


CHOSE Lab, Roma2 Dip Ing. Elettr.

OMHP photodetectors Au Spiro OMeTAD np TiO2 & Perovskite c-TiO Glass/FTO (a) (b) Glass/FTO Laser Etching Spray Pyrolysis Screenprinting TiO₂ HTM Au Evaporation CH₃NH₃I (c) Energy Level (eV) -3.93eV -4.0eV -4.4eV -5.1e (+)-5.22eV -5.43eV


Already experience with fabrication of

TCO TiO₂ CH₃NH₃Pbl₃ Spiro OMeTAD Au


S. Casaluci et al. IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 15, NO. 2, MARCH 2016

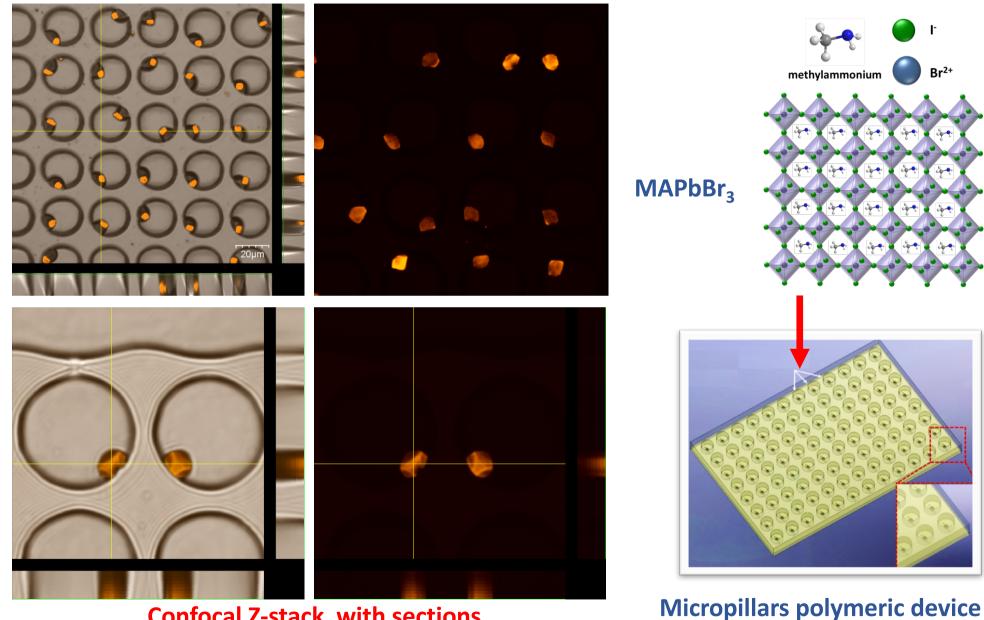
Microfluidics: Soft-Lithography fabrication technique

Why Microfluidics ?

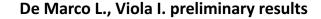
Prevalent TOOL for the local control of liquid flows

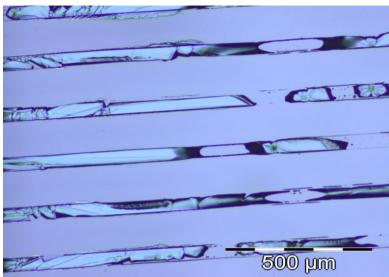
Manipulation of gas and liquid inside the confined environment of micro-networks

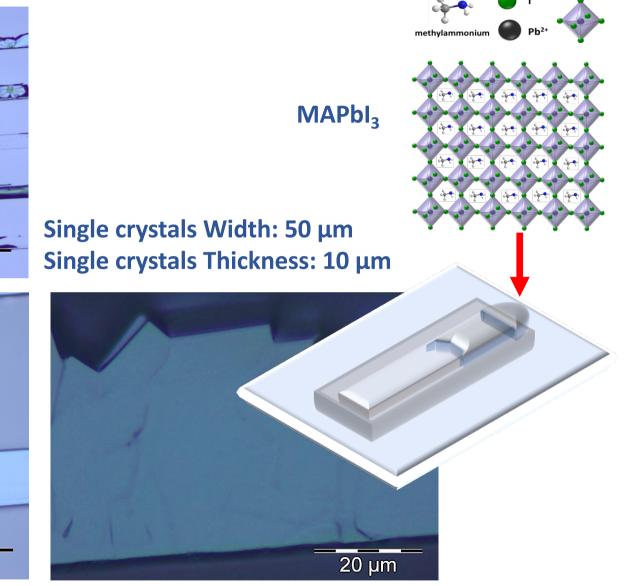
Fabrication of miniaturized devices and micro-array


Integration of functional components (Mixers, Valves, Filters and Pumps) for

OptoElectronics, Chemistry and Biology


A. Groisman et al., Science, 300, 2003


Preliminary experimental results: MAPbBr₃ micropixels


Confocal Z-stack with sections

Preliminary experimental results: MAPbl₃ on glass

100 µm

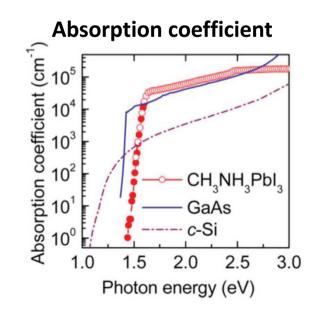
to be optimized...

De Marco L., Viola I. preliminary results

State of art: Silicon based photodetectors

PDG2018: **"Except for applications where coverage of very large areas** or dynamic range is required, solid-state detectors are proving to be the better choice."

Type	λ (nm)	$\epsilon_Q \epsilon_C$	Gain		1-p.e noise (Hz)	Price (USD)
					$1-10^3 \\ O(10^6)$	


Example: APD used in CMS crystal Gain=50

Electronic/Optical Properties

Material	h^+ effective mass $[m_e]$	e^- effective mass $[m_e]$	μ_{h+} [cm ² V ⁻¹ s ⁻¹]	μ_{e-} [cm ² V ⁻¹ s ⁻¹]
Si ^{b)}	0.54 ^[109]	0.32[110]	500 ^[109]	1500[110]
GaAs ^{b)}	0.53 ^[113]	0.06 ^[113]	400 ^[113]	8000[113]
CdTe ^{b)}	0.72 ^[115,116]	0.11[115,116]	100[117]	1100[117]
CuInS ₂	_{~≈}][120]	0.16 ^[120]	≈20 ^[120]	≈150 ^[120]
MAPbI ₃	0.26 ^[122,123]	0.23 ^[122,123]	≤160 ^[124]	≤70 ^[124]
MAPbBr ₃ c)	0.15 ^[127]	0.25 ^[127]	≤220 ^[128]	≤ 1 90 ^[129]

Egger et al. Adv. Mater. 2018, 1800691

Electronic properties are aligned with conventional semiconductors and much better than typical solution process organic semiconductors.

