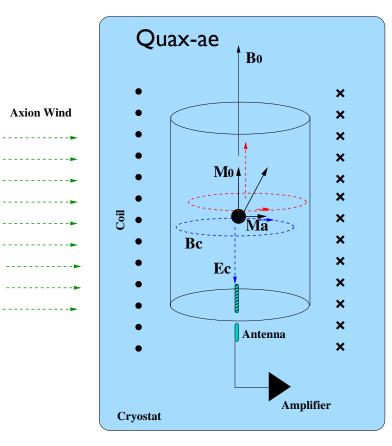

QUAX

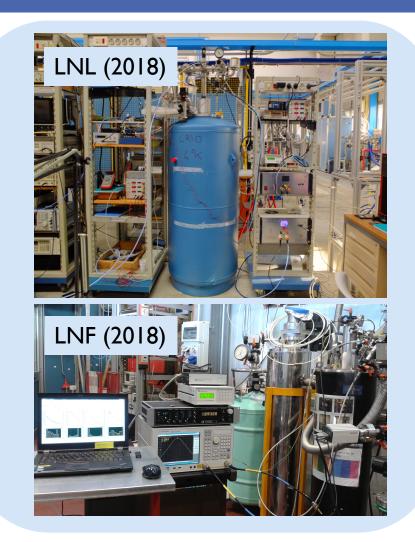

CLAUDIO GATTI

QUAX: Quest for Axions

$$\mathcal{L} = i\frac{g_d}{2}a\left(\bar{N}\sigma_{\mu\nu}\gamma^5N\right)F^{\mu\nu} + i\frac{g_{aNN}}{2m_N}\partial_{\mu}a\left(\bar{N}\gamma^{\mu}\gamma^5N\right) + i\frac{g_{aee}}{2m_e}\partial_{\mu}a\left(\bar{e}\gamma^{\mu}\gamma^5e\right) + g_{a\gamma\gamma}aE \cdot B$$

QUAX R&D 2018-2020

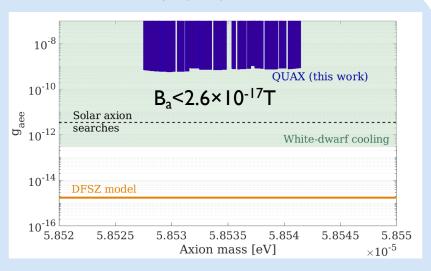
Created by Chameleon Design from Noun Project

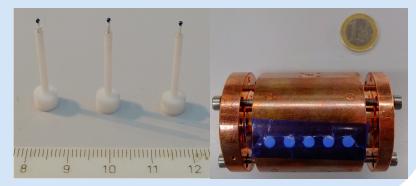

QUAX R&D 2018-2020

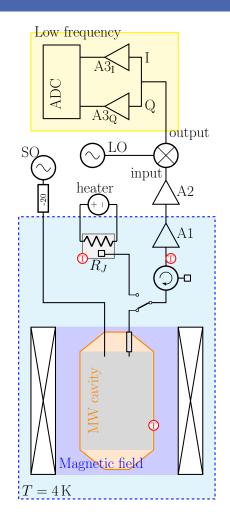
R&D goals:


- High-Q resonant cavities operating in intense B field
- Low loss magnetic material for axion-electron detection
- Low noise cryogenic amplifiers and/or microwave photon detectors

Sezioni INFN
Padova (Resp Naz)
LNL
LNF
TIFPA FBK
Salerno

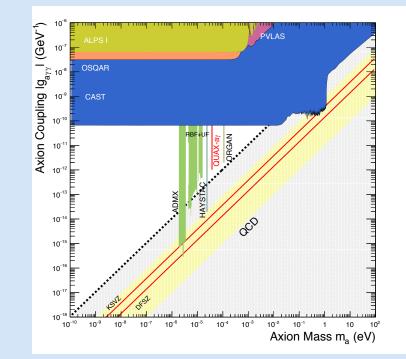


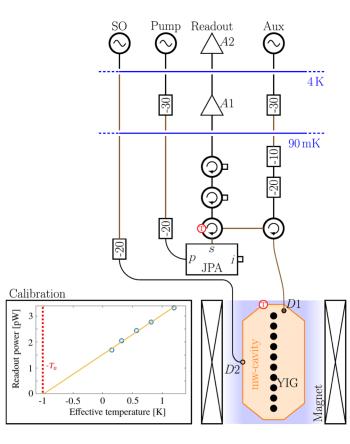

QUAX-ae result with Ferromagnetic Axion Haloscope at $m_a = 58 \mu eV$


Experimental Setup	
B [T]	0.5
N. of GaYIG Sphere (diameter =1 mm)	5
n _s [spin/m³]	2.1×10 ²⁸
τ _{min} [μs]	0.11
Frequency [GHz]	13.98
Cu-cavity Q (mode TM110)	50,000
T _{cavity} [K]	5.0
T amplifier [K] (HEMT)	П

EPJC (2018) 78:703

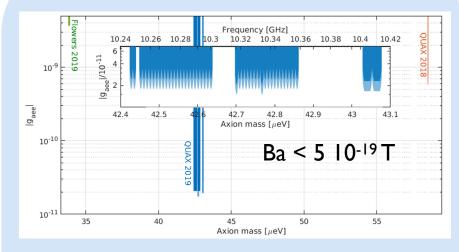
QUAX-ay Result with Superconductive Resonant Cavity at $m_a = 37.5 \ \mu eV$


Experimental Setup	
B [T]	2
Frequency [GHz]	9
NbTi cavity Q (mode TM010)	400,000
T _{cavity} [K]	5.0
T amplifier [K] (HEMT)	11


IEEE TRANS. APP. SUPERCOND. 29, 5 (2019)

Phys. Rev. D 99, 101101(R) (2019)

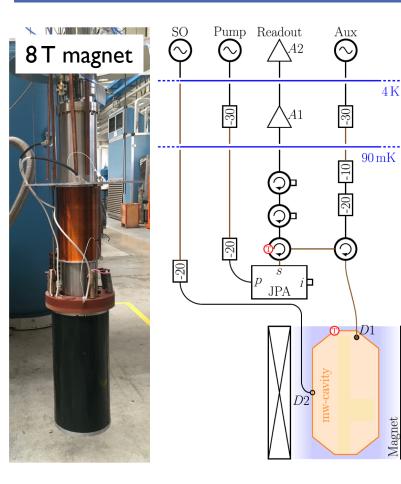
$$g_{a\gamma\gamma} < 1.03 \times 10^{-12} \,\mathrm{GeV}^{-1}$$

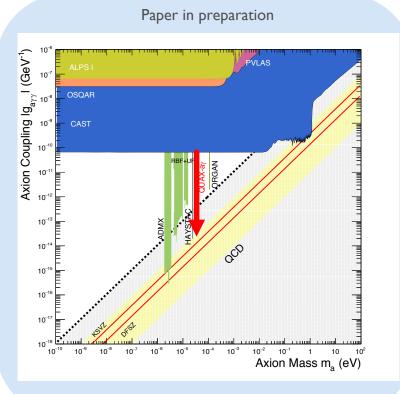


QUAX-ae with Quantum-Limited Ferromagnetic Haloscope

Experimental Setup		
B [T]	0.5	
N. of GaYIG Sphere (diameter =2.1 mm)	10	
n _s [spin/m³]	2.1×10 ²⁸	
τ _{min} [μs]	0.1	
Frequency [GHz]	10.7	
Cu-cavity Q (mode TM110)	50,000	
T _{cavity} [mK]	90	
T amplifier [K] (JPA)	0.5-1	

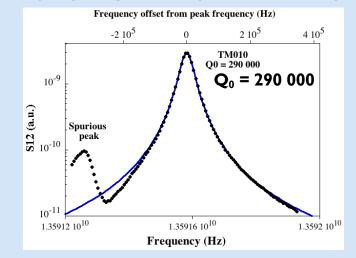
Phys. Rev. Lett. 124, 171801 (2020)



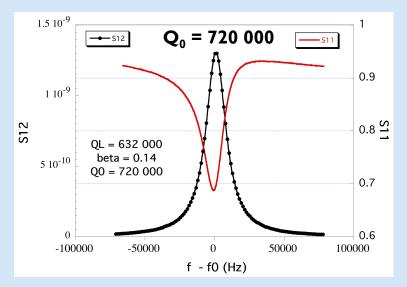

7

QUAX-a γ in 2020 Reached the Sensitivity to QCD Axions

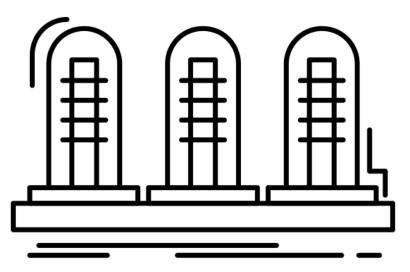
agnet



Experimental Setup		
B [T]	8	
Frequency [GHz]	10.4	
Cu cavity Q (mode TM010)	76,000	
T _{cavity} [mK]	90	
T amplifier [K] (JPA)	0.5-1	


High Q Dielectric Cavities

High quality factor photonic cavity


High quality factor photonic resonator with hollow dielectric cylinders

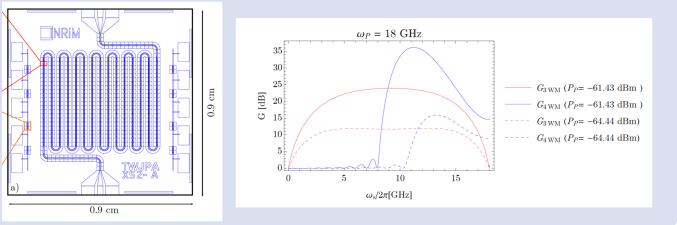
Submitted to Nucl Instr Met

Submitted to Rev Sci Instr

Created by Flatart from Noun Project

SIGNAL AMPLIFICATION

TWJPA


Travelling Wave Josephson Parametric Amplifier fabricated at INRIM:

- Broadband (2-3 GHz)
- High gain (>20 dB)

A TWJPA ia a two-port superconducting device consisting in a coplanar waveguide in which is embedded a repetition of hundreds of elementary cells. These cells are made of an RF-SQUID and a geometrical inductor capacitively coupled to ground.

SIMP (CSNV)

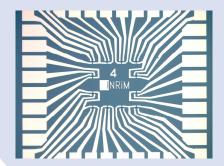
Units

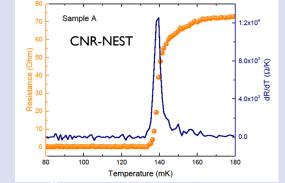
LNF (Resp Naz)

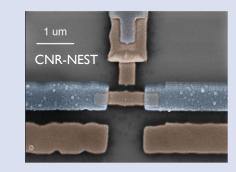
INFN Pi

INFN Sa

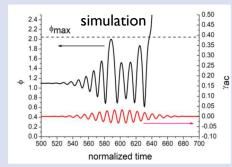
TIFPA-FBK

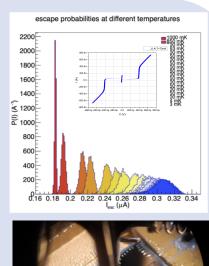

CNR Nano NEST


CNR IFN


INRIM

Objective: develop devices sensitive to single microwave photons in the range 10-100 GHz. Two different technologies: Josephson Junctions; Nanowire-TES.


- Fabricated nanowire-TES with Tc about 130 mK (INRIM, CNR-NEST).
- Ongoing: SQUID readout; RF tests.



- JJ fabricated at CNR-IFN and fully characterized in DC at 40 mk.
- Device simulation
- RF tests ongoing

D Alesini et al Journal of Low Temperature Physics https://doi.org/10.1007/s10909-020-02381-x D Alesini et al 2020 J. Phys.: Conf. Ser. 1559 012020

SUPERGALAX

Network of N interacting superconducting qubits

FET OPEN SUPERGALAX

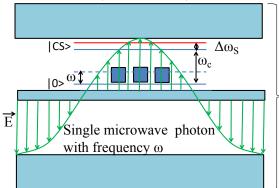
CNR (IT, PI, exp)

INRIM (IT, exp)

INFN (IT, axion exp)

KIT (DE, exp)

Leibniz IPHT (DE, exp)

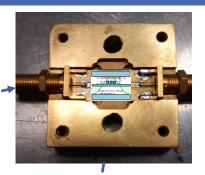

RUB (DE theory)

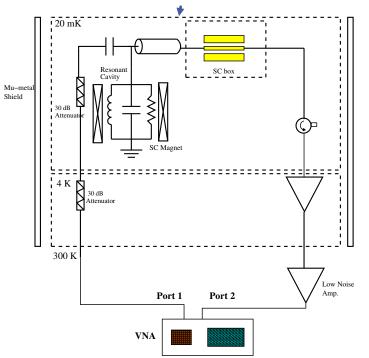
LU (UK, theory)

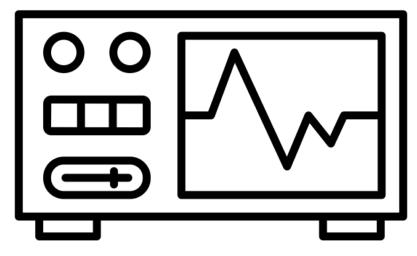
 $\langle \rangle$

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 863313. Grant amount 2 456 232.50 Euro.

https://supergalax.eu

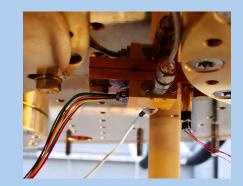



Superconducting - coplanar wave guide resonator • Magnetic field

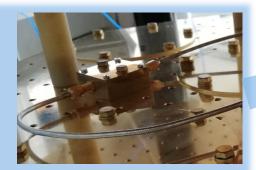

Objective: Develop a single microwave photon detector for axion search in QUAX experiment with an array of SC qubits.

In a device based on array of qubits signal noise is suppressed by \sqrt{N} .

Zagoskin et al., «Spatially resolved single photon detection with a quantum sensor array» SCIENTIFIC REPORTS | 3 : 3464 | DOI: 10.1038/srep03464

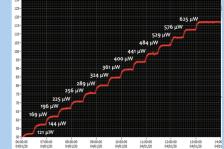

Created by Mohamed Mbarki from Noun Project

QUAX EXPERIMENT 2021-2025



QUAX@LNF

HEMT (6-20 GHz) 4K amplifier



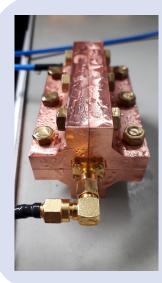
Sample holder for SC chip at 10 mK for single photon device or TWJPA

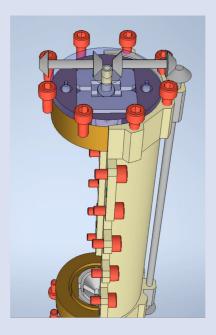
http://coldlab.lnf.infn.it

Characterization of dilution refrigerator (with not optimal pumping system, can be improved)

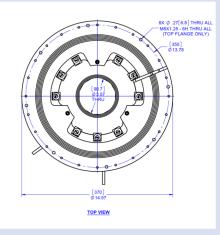
<image>

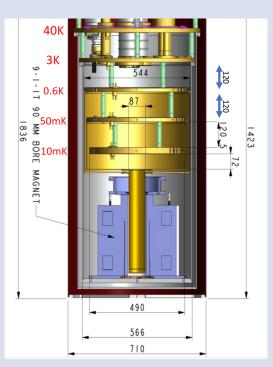
FET LNA 8-12 GHz and IQ-mixer (10-12 GHz)


DAQ



QUAX@LNF




YBCO-Tape Cavity 17 GHz square cavity for YBCO-tape measurement Q_{cu}^{77k}=20,000 (IBS_CAPP measured Q=330,000 for a cavity with YBCO tabe in B field up to 8T at 7 GHz and 4 K arXiv:2002.08769) Design of tuning system for dielectric cavity (S. Lauciani)

New 9T magnet for dry dilution refrigerator:

- length 40 cm
- Inner bore 9 cm

QUAX 2021-2025

	2021	2022	2023	2024	2025
Assembly of haloscopes					
at LNL and LNF					
		Data Taking		I-2 GHz scan	

Conclusion

What happened in the last three years ...

- QUAX had a rich R&D program leading to several publications on axion physics and superconductive and dielectric cavities.
- We reached the sensitivity to QCD-axion!
- We started an R&D on quantum limited amplifiers and single photon detectors (SIMP, SUPERGALAX, DART WARS?).
- Collaborations with CNR, INRIM, FBK and EU projects.
- LNF is going to be an experimental site of QUAX!!

Morevover:

COLD is a laboratory for radiofrequency in cryogenics, where we are testing quantum technologies such as superconducting qubits and Josephson metamaterials that may be the future tools for precision physics, dark-matter searches, analogue gravity on SC chips, quantum gravity, gravitational wave detection and more!

LNF 2021	FTE
C Gatti (PR, Loc Resp)	0.4 +0.2 _(supergalax)
D Di Gioacchino (R)	0.35 +0.15(supergalax)
C Ligi (T)	0.35 +0.5 _(supergalax)
D Alesini (DT)	0.1
G Maccarrone (PR)	0.3
D Babusci (PR)	0.3
D Moricciani (R)	0.5
A Rettaroli (PhD student)	0.6
Tot	2.9+0.5