NA62: Present and future

Matthew Moulson For the NA62 Frascati group

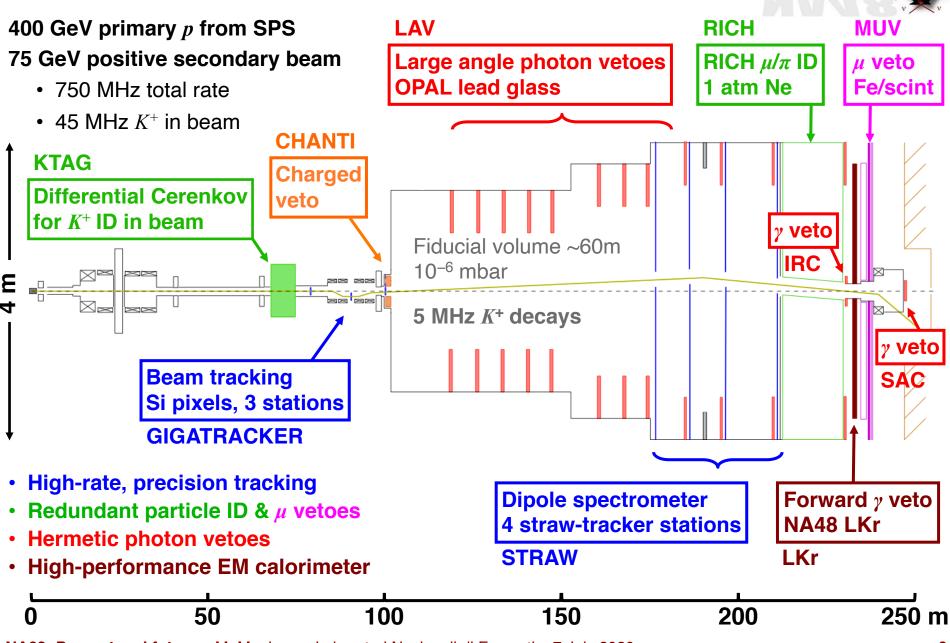
Laboratori Nazionali di Frascati 07 July 2020

New physics in $K \rightarrow \pi v \bar{v}$ decays

15

20

 $BR(K^+ \rightarrow \pi^+ v \overline{v}) \times 10^{11}$

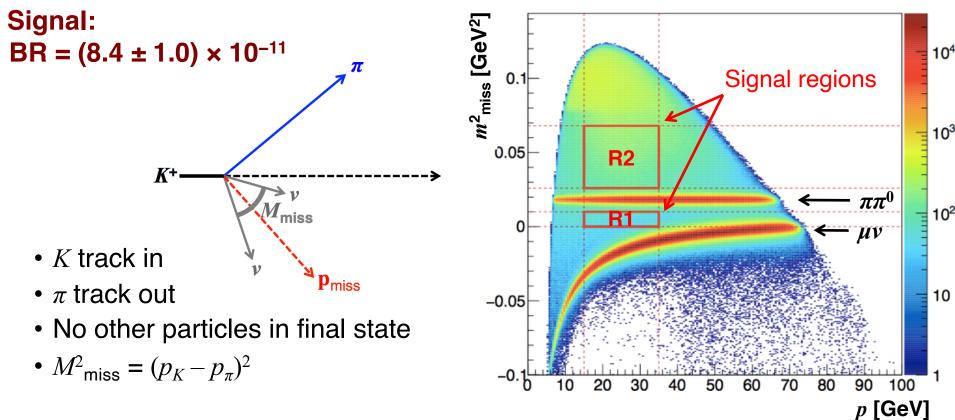

Extremely rare decays with rates very precisely predicted in SM:

	-	
	SM predicted rates*	Experimental status
$K^+ \rightarrow \pi^+ v \overline{v}$	BR = (8.4 ± 1.0) × 10 ⁻¹¹	7 evts from BNL787, 3 evts from NA62 Goal: BR to 20% from NA62 by end of Run 3
$K_L ightarrow \pi^0 v \overline{v}$	$BR = (3.4 \pm 0.6) \times 10^{-11}$	Only limits at present KOTO (JPARC): ~ few SM events by 2025
Buras et al, JH K^+ and K_L B unitarity tria $(M_0 \mathcal{L} \leftarrow T_X)^{\text{US}}$ $(M_0 \mathcal{L} \leftarrow T_X)^{\text{US}}$ $(M_0 \mathcal{L} \leftarrow T_X)^{\text{US}}$	Rs completely determine	$I_{A} = arg V_{td}V_{ts}^{*}$ $Min. flavor viol.$ $Z/Z', LHT$ $Randall-Sundrum$ $Buras, Buttazzo, Knegjens$ $JHEP 1511$ $JHEP 1511$ $Leg n \Delta_{L} \text{ or } \Delta_{R} \text{ only}:$ $ \varepsilon_{K} ^{NP} \propto Im \Delta_{L(R)}^{2} / M_{Z'}^{2} $
New physic	s affects <i>K</i> ⁺ and <i>K_L</i> BRs	$\mathbf{L}_{(R)} = \mathbf{L}_{(R)} + L$

New physics affects K^+ and K_L BRs differently

Can discriminate among different models NA62: Present and future – M. Moulson – Laboratori Nazionali di Frascati – 7 July 2020

The NA62 experiment at the SPS



NA62: Present and future - M. Moulson - Laboratori Nazionali di Frascati - 7 July 2020

NA62

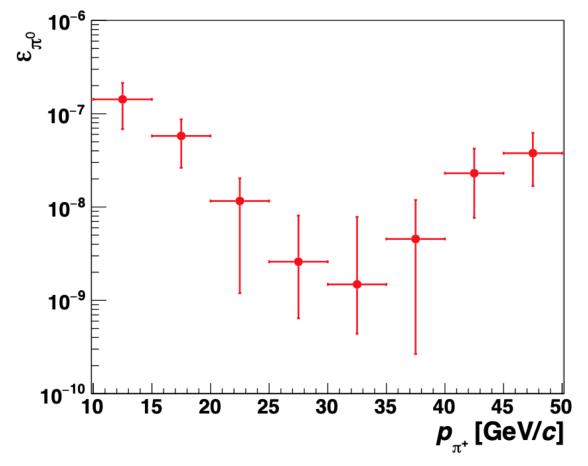
$K^+ \rightarrow \pi^+ v \bar{v}$ with decay in flight

Main backgrounds:

 $K^+ \rightarrow \mu^+ v(\gamma)$ BR = 63.5% $K^+ \rightarrow \pi^+ \pi^0(\gamma)$ BR = 20.7%

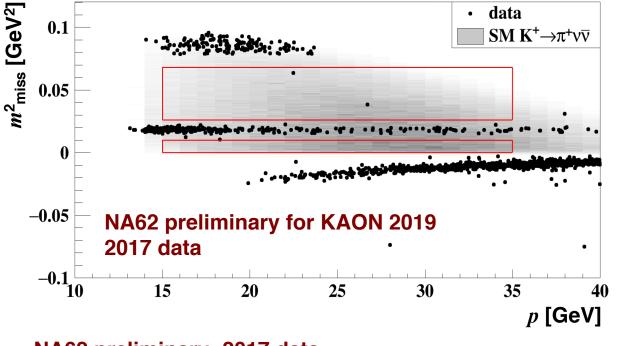
Selection criteria:

- *K*⁺ beam identification
- Single track in final state
- π^+ identification ($\varepsilon_{\mu} \sim 10^{-8}$)
- γ rejection ($\varepsilon_{\pi 0} \sim 10^{-8}$)


Photon efficiency: $\pi^0 \rightarrow \text{invisible}$

Evaluation of π^0 rejection from single-photon detection efficiency measurements Use $K^+ \rightarrow \pi^+ \pi^0$ events from $K^+ \rightarrow \pi^+ vv$ control sample (0.015 < m^2 < 0.021 GeV²)

- Single-γ detection efficiency from data by tag-and-probe
- Overall π⁰ rejection from single-γ efficiencies by convolution with MC
- Expected π⁰ rejection:
 2.8^{+5.0}_{-2.1} × 10⁻⁹
 25 GeV < p_{π+} < 40 GeV
- Background expected: $10^{+22}_{-8} K^+ \rightarrow \pi^+ \pi^0$
- Events observed: 12


Article in preparation

BR($\pi^0 \rightarrow$ invisible): < 4.4 × 10⁻⁹ (90%CL) 60x more stringent than previous best result

BR($K^+ \rightarrow \pi^+ v \bar{v}$) from 2016-17 data

NA62 preliminary: 2017 data

Background source	Expected events R1 + R2	
$K^+ ightarrow \pi^+ v v$ (SM)	$2.16 \pm 0.12_{stat} \pm 0.26_{ext}$	
$K^+ \longrightarrow \pi^+ \pi^0(\gamma_{IB})$	$0.29 \pm 0.03_{stat} \pm 0.03_{sys}$	
$K^+ \rightarrow \mu^+ \nu(\gamma_{IB})$	$0.11 \pm 0.02_{stat} \pm 0.03_{sys}$	
$K^+ \rightarrow \pi^+ \pi^- e^+ v$	$0.12 \pm 0.05_{sys} \pm 0.03_{sys}$	
Upstream background	$0.9 \pm 0.2_{stat} \pm 0.2_{sys}$	
Total background	1.5 ± 0.2 _{stat} ± 0.2 _{sys}	

Run	<i>K</i> ⁺ decays
2016	1.2 × 10 ¹¹
2017	2 × 10 ¹²
2018	4 × 10 ¹²

2016-17 preliminary KAON 2019

SES = $(3.46 \pm 0.17) \times 10^{-11}$

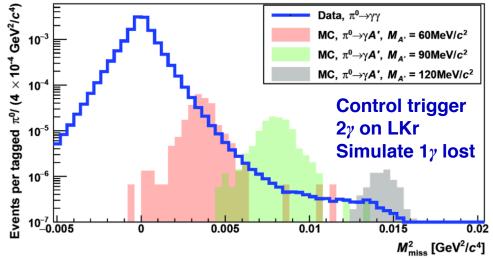
- Expected signal 2.43 ± 0.29
- Expected bkgd 1.65 ± 0.31

3 events observed in R2

BR($K^+ \rightarrow \pi^+ vv$)

<18.5 × 10⁻¹¹ (90%CL)

- Article in preparation
- Preliminary update with 2018 data expected soon
- 2016-2018 sensitivity O(10) SM $K^+ \rightarrow \pi^+ \nu \nu$ events


NA62: Present and future - M. Moulson - Laboratori Nazionali di Frascati - 7 July 2020

Dark photons with invisible decays **NA62**

Search for $K^+ \to \pi^+ \pi^0$ with $\pi^0 \to \gamma A'$ and A' invisible

- Sensitivity for $m_{A'} < m_{\pi 0}$
- Signal: 1 track + 1 γ + missing energy
- Search for missing mass peak corresponding to A'
- Main background: $\pi^0 \rightarrow \gamma \gamma$ with 1 γ lost

10⁻⁵ **(g-2)**_"±2σ 10^{-6} **BaBar** NA62 **10⁻⁷** NA64* 40 60 80 100 120 140 $M_{A'}$ [MeV/ c^2]

JHEP 1905 (2019) 182

Result from 2016 subsample (1% of NA62 data)

- 4.1 × 10⁸ π^0 decays
- Background from negative m_{miss} resolution tail from control data
- No significant excess observed 90% CL UL within expected statistical uncertainty band
- NA64 UL since updated, but prospects * for future NA62 limits remain competitive

NA62: Present and future – M. Moulson – Laboratori Nazionali di Frascati – 7 July 2020

Physics reach with beam dump

NA62

Coupling NA64, 5x10¹²eot 10^{-5} FASER, 150 fb 10^{-6} 10^{-7} NA62, 10¹⁸pot 10^{-8} 10^{3} 10^{2} 10 $m_{A'}$ [GeV] Dark scalar S (BC4) 10^{-3} $\sin^2 \theta$ LHCb & Belle 10^{-4} $B \rightarrow K \mu \mu$ CHARM 10^{-5} $S \rightarrow e^+ e^-, \mu^+ \mu^ 10^{-6}$ LHCb Coupling 10^{-7} $\rightarrow \pi + invisible$ pased on E949 data) 10^{-8} NA62, 10¹⁸pot 10^{-9} SN1987a 10^{-10} 10^{-11} 10^{-12} 10^{-13} **BBN** ($\tau > 1$ sec) 10^{-14} 10^{-1} 10 m_S [GeV]

 10^{-2} ω

 10^{-3}

 10^{-4}

LNF group coordinates exotic physics program

Sensitivity estimates for exotic particle searches in beam dump mode

- Assumes 10¹⁸ pot in dump mode = few months dedicated run in Run III
- Validated with 3×10^{16} pot taken in Run II
- Calculated for Physics Beyond Colliders J. Phys. G 47 (2019)

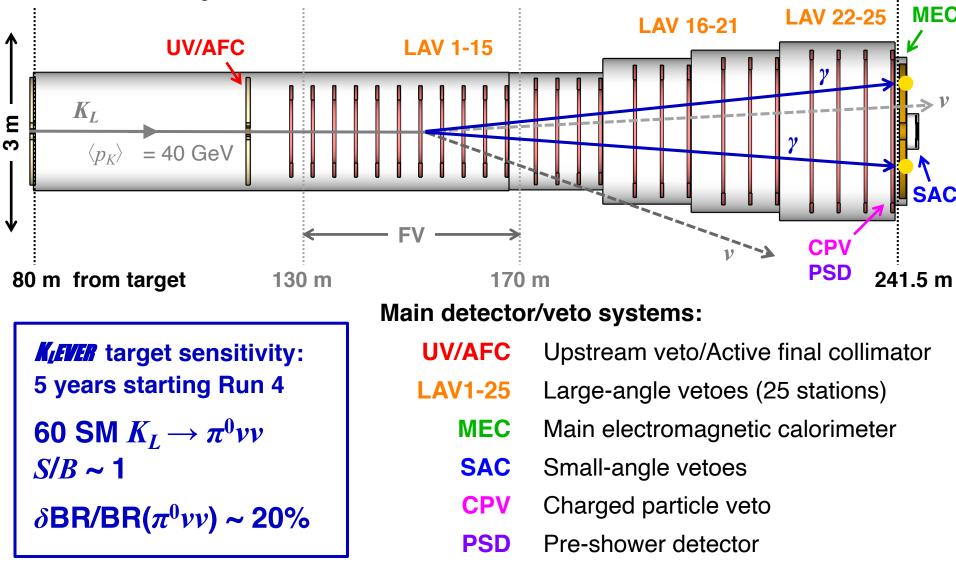
$K \rightarrow \pi v \bar{v}$ in Run III and beyond

Data taking in Run III: July 2021 – end of 2024

- Collect 10¹⁸ pot in beam-dump mode to search for exotic particles
- Suppress background from upstream decays and interactions
 - Modifications to beamline
 - Add 4th station to GTK beam tracker
 - New counters to veto background from beam activity
- Run at maximum beam intensity (possibly higher in beam dump mode)
- Expect to measure BR($K^+ \rightarrow \pi^+ vv$) to < 20%

Beyond Run III: 2026+

- Fixed target runs planned to accompany LHC running through 2035
- Support from European Strategy for fixed-target running, including *K* physics
- Measuring all rare *K* decay modes—charged and neutral—can give clear insight about flavor structure of new physics


Need an *integrated program* with ambitious *new detector:*

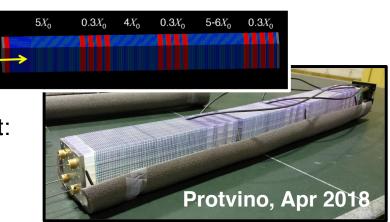
- 1. "NA62x4": BR($K^+ \rightarrow \pi^+ vv$) to 5% with 4x current beam intensity
- 2. KLEVER: BR($K_L \rightarrow \pi^0 v v$) to 20% with 6x current beam intensity
- **3.** $K_L \rightarrow \pi^0 v v$ and other rare and forbidden K_L decays

A $K_L \rightarrow \pi^0 v \bar{v}$ experiment at the SPS

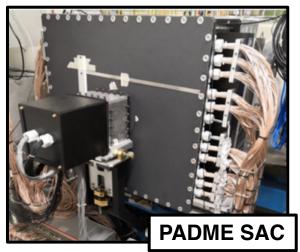
400-GeV SPS proton beam (2 × 10¹³ pot/16.8 s) incident on Be target at z = 0 m

NA62: Present and future – M. Moulson – Laboratori Nazionali di Frascati – 7 July 2020

Planned future activity at Frascati


Photon efficiency measurements at BTF-2 will be key to KLEVER R&D

- Precision measurements of detection efficiency with single electrons
- Development of techniques for efficiency measurements with tagged photons


BTF test of shashlyk calorimeter with spy tiles (MEC) for 2021

Fine-sampling: 0.275 mm Pb + 1.5 mm scintillator Spy tiles measure longitudinal shower development:

- Identification of μ , π , n interactions
- Improved time resolution for EM showers

Development of ultra-fast calorimeter to intercept beam exit (SAC)

Synergy with PADME SAC upgrade for future running with continuous beam: AIDAinnova project Desired characteristics:

- > 100 MHz sustained rates
- $\sigma_t < 100 \text{ ps}$; 2-pulse separation at ~ 1 ns
- Good radiation resistance

Could use PbF₂, but validation required for use at continuous high rates and high radiation doses

NA62: Present and future – M. Moulson – Laboratori Nazionali di Frascati – 7 July 2020

Richieste CSN1 per il 2021

Sigla	Ric	Tec	FTE	MISS	CON
NA62	9	0	6.8	91.5 kE*	20.5 kE*

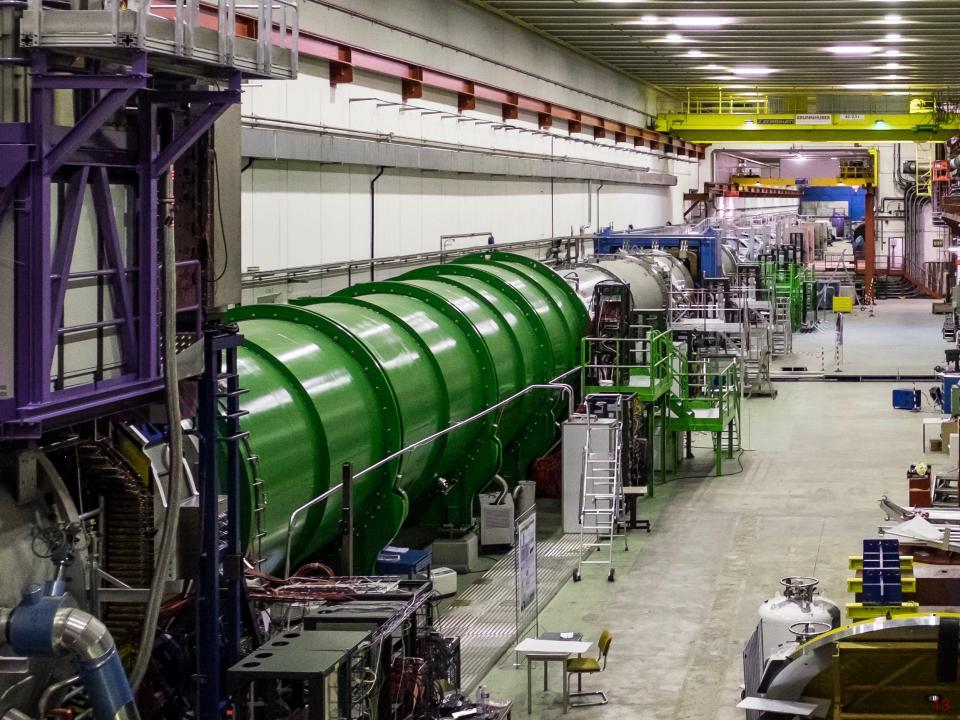
* Stime ancora in fase di discussione con coordinamento nazionale

Anagrafica:

Antonella Antonelli	100%
Gaia Lanfranchi	20%
Silvia Martellotti	100%
Matteo Martini	30%
Matthew Moulson	100%
Tommaso Spadaro	80%
Gemma Tinti	100%
Associati: Sofia	
Venelin Kozhuharov	50%
Vanessa Stoyanova	100%

Servizi:

2020:


Servizio Elettronica & Automazione 2MU

Manutenzione LAV e istallazione sistema di calibrazione in preparazione per ripartenza luglio 2021

2021 (stimata):

Servizio Elettronica & Automazione 2MU

Perfezionamento preparativi e supporto run 2021

