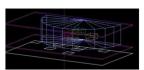
Medipix4

Valeria Rosso, Pasquale Delogu, Maria Evelina Fantacci, Daniele Panetta

RADiazioni IOnizzanti in Mammografia (2017-2020 - Fondazione Pisa, UNIPI, INFN, AOUP)

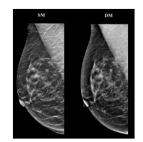
Caratterizzazione dei fasci mammografici.


Studio di come la dose viene assorbita e distribuita all'interno della mammella (spessore, composizione). Misure sperimentali su fantoccio fisico.

Simulazioni MonteCarlo per virtual trials.

Valutazione di mammografie di mammelle di diversa composizione e spessore acquisite in diverse condizioni di irraggiamento.

Sviluppo di algoritmi di image processing. Classificazione deep learning.

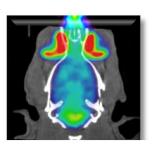


- Calcolo della Mean Absorbed Dose.
- Calcolo dell'indice di ghiandolarità.

Realizzazione di interfaccia grafica dedicata. Informazioni personalizzate disponibili per ogni singola paziente e per ogni singolo esame.

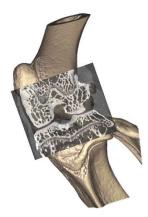
Studi epidemiologici, messa in atto di particolari accorgimenti o programmazione di indagini ulteriori. Verifica costante del rispetto dei LDR (Livelli Diagnostici di Riferimento).

Ulteriori sviluppi:


- Big data e deep learning in mammografia.
- Valutazione dei fattori di rischio.
- SMF (Standard Mammographic Form).
- Applicazione alla DBT (Digital Breast Tomosysnthesis).
- Sistemi di rivelazione per una caratterizzazione più precisa dei fasci mammografici e per le misure su fantoccio fisico.

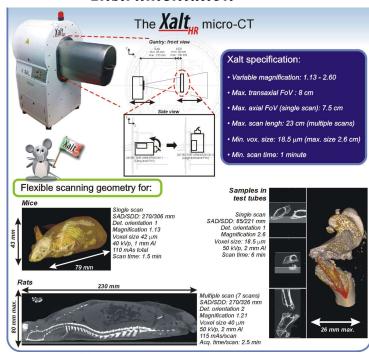
Preclinical research with μ CT and μ PET/CT @ CNR-IFC Pisa

(eurobioimaging.eu)


Main fields of investigation

Tracer develoment / Molecular Imaging

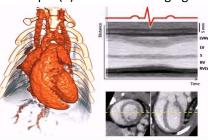
Atherosclerosis/ Vascular imaging



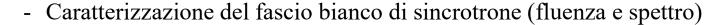
Regenerative medicine/Osteopo rosis

Small fossils/ Non destructive testing (NDT)

Instrumentation



inviscan Example (1): CT angiography (CTA)



Example (2): 4D cardiac imaging

KISS: K-edge Imaging at Synchrotron Sources

Una linea di ricerca di KISS è dedicata all'imaging spettrale 2D e 3D (in particolare K-edge imaging) **con fasci policromatici** (tubo Rx e fascio bianco di sincrotrone) e rivelatore »spettrale» Pixirad PIXIE III Risultati allo stato attuale:

- Caratterizzazione del rivelatore (efficienza, rumore, risol. energetica, risol. spaziale)
- Sviluppo e verifica di un software di simulazione di immagini (tiene conto delle caratteristiche del fascio, del campione e del rivelatore).
- Sviluppo di diversi software di ricostruzione 2D e 3D che implementano diversi algoritmi spettrali (KES, Bases Material Decomposition ecc.)
- Vari test 2D e 3D con uso di diversi mezzi di contrasto (I, Ba, Gd) a varie concentrazioni in matrici di diverso materiale e spessore
- Confronto dei risultati con il caso «ideale» di fascio monocromatico.

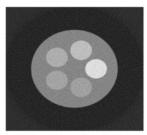


Fig1: conventional CT

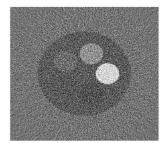


Fig2: KES image

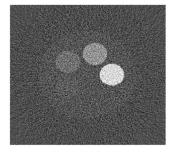


Fig3: BMD iodine

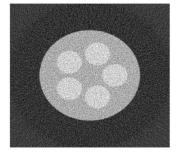


Fig4: BMD water

Development of a vacuum-based single-photon imaging detector

Massimiliano Fiorini

INFN and University of Ferrara, Italy

(ERC 4DPHOTON Project: CERN, INFN, UNIFE)

ERC consolidator grant 4DPHOTON - BEYOND LIGHT IMAGING: HIGH-RATE SINGLE-PHOTON DETECTION IN FOUR DIMENSIONS

2 M€

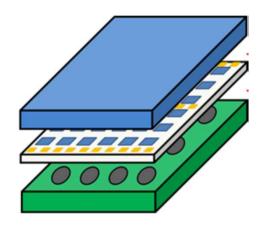
5y

inizio 2020

Courtesy of M. Fiorini

Medipix4 Collaboration members:

https://medipix.web.cern.ch/


Institute	Group	Country
Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA) (http://www.cea.fr)	Institute for Integration of Systems and Technologies (LIST). Department of Metrology, Instrumentation & Information (http://www-list.cea.fr/)	France
JINR		
National Institute for Subatomic Physics, Nikhef (http://www.nikhef.nl/en)	Detector R&D (https://www.nikhef.nl/en/programs/detector-rd/)	The Netherlands
University of Houston (http://www.uh.edu/)	Physics Department (http://www.phys.uh.edu/)	USA
Czech Technical University (http://www.cvut.cz/)	Institute of Experimental and Applied Physics (http://www.utef.cvut.cz/)	Czech Republic
DESY-Hamburg (http://www.desy.de/)	The Detector Group (http://hasylab.desy.de/instrumentation /detectors)	Germany
University of California, Berkeley	Space Sciences Laboratory (http://www.ssl.berkeley.edu/)	USA
CERN (http://www.cern.ch/)	The Medipix Team, Microelectronics Group, PH Department	Switzerland
Diamond Light Source (http://www.diamond.ac.uk/Home.html)	Detector Group (http://www.diamond.ac.uk/Science/Research/Detector.html)	UK
Maastricht University		
University of Canterbury (http://www.canterbury.ac.nz/)	MARS-CT (http://www.canterbury.ac.nz/spark /Project.aspx?projectid=63)	New Zealand
Oxford		UK
Institut de Física d'Altes Energies <u>IFAE</u> (http://wwwpc.ifae.es/) Barcelona	X-ray group (http://xray.ifae.es/)	Spain
Université de Genève	Département de Physique Nucléaire et Corpusculaire (DPNC) (http://dpnc.unige.ch)	Switzerland
University of Glasgow (http://www.gla.ac.uk/)	Detector Development Group (http://ppewww.physics.gla.ac.uk /det_dev/),Dept of Physics and Astronomy	UK

Per entrare nella collaborazione Medipix4, in 4y 250 k€

TIMEPIX4 65 nm CMOS	
Pixel arrangement	
Sensitive area	
Max rate	Data driven
Max rate	Frame based
TOT energy resolution	
TOA	
Readout bandwidth	
Minimun threshold	

- Bumping mask in produzione
- Primi assemblies Si in luglio

Sezioni partecipanti: <u>Ferrara</u>, Trieste, Pisa, Napoli e LNS

Colonna1-	Item	Units	Coordination
WP0	Management	Fe	Fe
WP1	Electronics/SW/cooling	Fe, Na, Pi	Fe
WP2	Detectors Development	Fe, LNS, Na	LNS
WP3	Dosimetry (X, γ, charged particles)	Na, Pi, LNS	Na
WP4	CT Imaging (u, CT, breast)	Na, Pi, Ts	Ts
WP5	Spectral Imaging (Dual Energy, KE-I)	Fe, Pi, Ts	Pi
WP6	Nuclear Medicine / Radiotherapy	LNS, Na	LNS/Na

ACTIVITY	TACIZ	2021			2022				2023				
ACTIVITY	TASK		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	3.1 Characterization of the Si detection system using clinical X-ray tubes 3.2 Characterization of the Si detection system for manimographic dosimetric applications												
WP3	3.3 Studies in mammography												
	3.4 Studies in tomosinthesys												
	4.1 Design and realization of dedicated phantoms 4.2 Characterization of the Cu-1e detection system working with contrast agents												
WP4	4.3 Setup of a rotating gantry												
"14	4.4 CT studies with developed phantoms	L											
	CT ex vivo studies for discrimination of soft tissues												
	5.1 Setting of the test setup for single module detector RO-NikHEF												
	5.2 Characterization of the detection system												
	5.3 Assembly of a chilled case for single-module Cd-Te system.												
WP5	5.4 Setting of the test setup for single module detectors /Si+Cd-Te) RO-Ferrara												
	5.5 Characterization of the detection system for k-edge imaging applications												
	5.6 Spectral 2D acquisitions												
	5.7 Assembly of a chilled case for multi-module Cd-Te system and tests	_											
	5.8 Spectral 3D acquisitions												

RICHIESTE I anno I sistemi (assembly/RO/PC) verranno acquistati da Ferrara

Consumo 5 kE Materiali Goodfellow per misure di risoluzione energetica (fluorescenza) Mezzi di contrasto.

Missioni 3 kE Misure presso le altre sezioni partecipanti.

• Richiesta di servizi: 3 settimane uomo in OFFICINA MECCANICA, per case rivelatore + RO

	Posizione	Medipix4 (%)
P. Delogu	PA	20
R. Borgheresi	Specializ.	50
M.E. Fantacci	PA	20
V. Rosso	PO	40
D. Panetta	Ric. CNR	20
		1.5 FTE

+ altri.....