

# Calibration of the drift chamber within the FOOT experiment

1<sup>st</sup> Workshop – Trento proton beam line facility

Yunsheng Dong

Università degli studi di Milano, INFN sezione di Milano

# The FOOT (FragmentatiOn Of Target) experiment



FOOT aims to measure the nuclear fragmentation cross sections relevant in PT and space radioprotection.

The data will be adopted:

- as benchmark for the MC tools
- to improve the current TPS
- to develop new shielding materials

**Emulsion spectrometer:** 

- Z≤3 and θ<70°
- Emulsion technology from the OPERA exp.
- A compact detector composed of emulsion, target and absorber material layers.

Electronic spectrometer:

- Z≥3 and θ<10°</li>
- Composed of different sub-detectors
- To measure the fragments TOF, momentum, dE/dx and kinetic energy

### **The Beam Monitor detector**





The detector goal is to measure the beam direction and position

#### Detector specs:

- Dimensions: 11.2 cm x 11.2 cm x 21 cm
- 6 staggered layers of cells on X and Y view
- Each layer composed of 3 rectangular cell (16 mm x 10 mm)
- 2 mylar windows at beam entrance and exit
- Filled with Ar/CO<sub>2</sub> at 80/20%
- 0.9 atm overpressure

## **BM characterization @ Trento**



The BM has been characterized by means of an external independent tracking detector

Goals:

- Calibration of the BM space-time relations
- Efficiency
- Resolution



Experimental setup:

- Plastic scintillator for trigger and BM time ref.
- BM tilted horizontally at 0°, 5° and 10°
- 4 layers of micro-strip silicon detectors with a mean resolution of 45  $\mu m$
- Proton beams at 228 and 80 MeV

## Space and beam time availability



Materials inside the experimental rooms:

- Detectors (BM, Start Counter and MSD)
- 3 Crates with different modules
- 1 delay box
- 2 laptop and 2 desktop pc
- Ar/CO2 80-20% gas bottle

#### The space availability was sufficient to place all the required materials

#### Beam time:

- 3 days of data taking ~ 9 hours
- Acquisition rate 300 Hz
- Total number of collected events  $\sim 2.10^{6}$

The beam time was just sufficient to perform the calibration. Maybe the possibility of a longer shift after 22.30 would be helpful

### **Space-time relations calibration**



Calibration method:

- Exploits the 228 MeV proton to minimize the Multiple Coulomb Scattering (MCS)
- Uses a previous set of space-time relations to reconstruct the BM tracks and align the detectors
- Combines the BM time measurements with the MSD projected distances

New space-time relations evaluated

No relevant changes btw 228 and 80 MeV results

## Efficiency



#### Hit efficiency = 0.929 ± 0.008 (HV=2200 V)

Fraction of events with one or two hits detected on even (odd) planes, when three single hits on odd (even) planes have been scored



**Efficiency as a function of the drift distance:** Propagate the MSD tracks into the BM cells to check the presence of a BM hit

The BM is inefficient at the cell border

Inefficiency partially compensated by the cell staggering

## **Spatial resolution**



BM track method:

Residual between the BM tracks and the BM hits.

- Uses only BM hits and tracks
- Depends on the BM reconstruction algorithm
- Multiple Coulomb Scattering negligible
- Measures the detector upper limit
  - **Resolution:**  $60 100 \mu m$  (in the central part of the cell)

#### MSD track method:

•

Residual between the MSD tracks and the BM hits

- External independent detector
- Independent from the BM reconstruction algorithm
- Multiple Coulomb scattering included
- Resolution: 150 μm (228 MeV) and 300 μm (80 MeV) (in the central part of the cell)

## **Conclusions and future perspectives**







The calibration and performance assessment of the BM has been successfully conducted at the Trento proton beam line facility https://doi.org/10.1016/j.nima.2020.164756

#### FOOT 2019-2020 data takings

- Emulsion data taking @ GSI with C @ 700 MeV/u and O @ 200 and 400 MeV/u
- Electronic setup test @ GSI with O @ 400 MeV/u

#### Next step: new data taking at CNAO with C ions

 Electronic spectrometer: almost full geometry data taking with: SC, BM, VTX, Tof-Wall and a 3x3 module of the Calorimeter

-Independent test of the MSD detector

Emulsion spectrometer: data taking at CNAO with C ion beams

# **Back up**

# The FOOT (FragmentatiOn Of Target) experiment

FOOT aims to measure the nuclear fragmentation cross sections relevant in PT and space radioprotection

Radiobiological desiderata (from PT):

- d $\sigma$ /dE for target fragm. in PT ~ 10%
- $d^2\sigma/d\Omega dE$  for projectile fragm. in PT ~ 5%
- Z ~ 2-3%; A ~ 5%

| Physics               | Beam            | Target                                  | Energy<br>(MeV/u) | Kinematic<br>approach |
|-----------------------|-----------------|-----------------------------------------|-------------------|-----------------------|
| Target fragm. in PT   | $^{12}C$        | $C, C_2H_4$                             | 200               | inverse               |
| Target fragm. in PT   | 16O             | $C, C_2H_4$                             | 200               | inverse               |
| Beam fragm. in PT     | <sup>4</sup> He | C, C <sub>2</sub> H <sub>4</sub> , PMMA | 250               | direct                |
| Beam fragm. in PT     | <sup>12</sup> C | C, C <sub>2</sub> H <sub>4</sub> , PMMA | 350               | direct                |
| Beam fragm. in PT     | <sup>16</sup> O | C, C <sub>2</sub> H <sub>4</sub> , PMMA | 400               | direct                |
| Space Radioprotection | <sup>4</sup> He | C, C <sub>2</sub> H <sub>4</sub> , PMMA | 700               | direct                |
| Space Radioprotection | <sup>12</sup> C | C, C <sub>2</sub> H <sub>4</sub> , PMMA | 700               | direct                |
| Space Radioprotection | <sup>16</sup> O | C, C <sub>2</sub> H <sub>4</sub> , PMMA | 700               | direct                |



Two experimental setups:

- Emulsion spectrometer: Z $\leq$ 3 and  $\theta$ <70°
- Electronic spectrometer:  $Z \ge 3$  and  $\theta < 10^{\circ}$

## **Particle therapy**

#### A form of radiotherapy that uses hadrons for the treatment of solid tumours



Main properties:

- Proton (50-250 MeV); Carbon ion (50-400 MeV/u)
- Max dose release in the Bragg peak
- Better dose conformation over the tumor volume with respect to conventional radiotherapy
- High biological effectiveness for heavy ion therapy

Nuclear interactions in PT:

- Target fragmentation in proton therapy
- Projectile fragmentation in heavy ion therapy

Need of differential cross section data to improve the treatments and study new PT ions

## **Radioprotection in space missions**



Radiation hazard in future long term and far from earth space missions to the Moon and Mars:

- Galactic Cosmic Radiations:

   Protons:
   A85-90%
   Helium
   A10-14%
   Heavy nuclei with Z>2:
   A1%
   Energies up to 10<sup>20</sup> eV
- Solar Particles events:

   Protons:
   -Helium:
   -Heavy nuclei with Z>2
   -1%.
   -Energies up to hundreds of MeV/u

The HZE (High Z and Energy) particles are the most dangerous

Need of nuclear interaction differential cross section data to optimize shielding design and strategy for shielding