

Extraction of CKM matrix elements in single top quark events

9/06/2020 A.O.M. Iorio

- The two actors: top quark and CKM
- CKM Measurements in the top sector
- Analysis of single top quark production and decays
- Results and interpretation

The Standard Model of particle physics

The Standard Model is a relativistic quantum field theory:

 \rightarrow 12 particle fields: "fermions"

 \rightarrow Electromagnetic, weak, and strong interactions derived from a **Gauge principle**

 \rightarrow Gauge **bosons** mediate interactions

 \rightarrow Particles acquire mass with the higgs mechanism

SM fundamental parameters:

- \rightarrow High number (>18) of fundamental parameters that must be measured from data.
- \rightarrow Those include, for example, the fermion masses, the interaction strengths, the higgs mass...

The CKM matrix and the top quark

The CKM matrix

Matrix of fundamental parameters regulating the "mixing" between quark families

- \rightarrow Transformation between the **free particle** vs **EW interacting lagrangian** eigenstates
- → **Strong diagonal trend:** disfavours cross-family couplings
- \rightarrow This trend is **the most evident** in the third family

CKM: the third row w/o top quark measurements

Components in the third row: observations from B-meson physics

- Mixing between neutral $B-\overline{B}$ mesons, for either B^0 or B^0s the box diagram is:

 \rightarrow Oscillation term Δm_d (Δm_s) depending on $|V_{td}|$, $|V_{ts}|$

see also pdg

 \rightarrow From lattice QCD, neglecting terms in |V_{tb}| - 1:

 $|V_{td}| = (8.1 \pm 0.5) \times 10^{-3}, \qquad |V_{ts}| = (39.4 \pm 2.3) \times 10^{-3}$

Ratio more robust theoretically, giving:

 $|V_{td}/V_{ts}| = 0.210 \pm 0.001 \pm 0.008$

CKM: the third row w/o top quark measurements

Components in the third row: observations from B-meson physics

- Mixing between neutral $B-\overline{B}$ mesons, for either B^0 or B^0s the box diagram is:

 \rightarrow Oscillation term Δm_d (Δm_s) depending on $|V_{td}|$, $|V_{ts}|$

see also pdg

 \rightarrow From lattice QCD, neglecting terms in $|V_{tb}|$ - 1:

$$|V_{td}| = (8.1 \pm 0.5) \times 10^{-3}, \qquad |V_{ts}| = (39.4 \pm 2.3) \times 10^{-3}$$

Ratio more robust theoretically, giving:

 $|V_{td}/V_{ts}| = 0.210 \pm 0.001 \pm 0.008$

Questions to be answered from top quark measurements: Is Vtb ≅ 1? If not, what's its value? Can we measure |Vtd| and |Vts| at tree level?

The top quark: a story of 25 years

The top quark: a story of 25 years

The top quark: a story of 25 years

Top-CKM measurements at LHC so far

The Large Hadron Collider

Proton-proton collision data taking:

Most powerful hadronic collider to date

 27 Km accelerating complex below the French-Swiss border close to Geneva

proton-proton collision energy up to 13 TeV

• Luminosity up to ~ 10^{34} cm⁻² s⁻¹ → 1 billion interactions/s

4 experiments at the interaction points: CMS, Atlas, Alice, LHCb, and LHCb

Period	Year	CM Energy (TeV)	Collected luminosity (fb ⁻¹)
Run I	2010-2011	7	6.1
Run I	2012-2013	8	23.3
Run II	2015-2018	13	158 6

The Compact Muon Solenoid experiment

One of the four large experiments

- "General purpose" detector:
- \rightarrow SM measurements and BSM searches
- Structure of layered sub-detectors:
- \rightarrow Silicon detectors for charged particles
- \rightarrow Electromagnetic and hadronic calorimeters
- \rightarrow Superconducting coil
- \rightarrow Muon gas detectors

 $^{\circ}$ Centered around the beam interaction point

- \rightarrow Polar coordinate system
- \rightarrow Using pseudorapidity " $\eta'' = -\ln (\tan \theta/2)$

Top quark at LHC: main production modes

Most abundant processes, ideal for:

- Coupling properties: inclusive and differential cross sections
- Top quark-related **parameters:** mass, width, CKM elements etc.
- Modeling of QCD (perturbative and non-pert.) and PDF

- tt pairs via strong interaction:
 - dominant at the LHC and Tevatron
 - depends on a_s
 - sensitive to pdf

• σ at LO $\propto (\alpha_s/m_{top})^2$

- weak charged current interactions
 - t-, s-channel and W-associated
 - tWb vertex in production
 - Sensitive to Vtb

```
• \sigma at LO \propto (\alpha \cdot |Vtb|)^2
```

NB: Several other associated production modes are studied, not yet used for CKM measurements

Top quark decays vademecum

CKM measurements in the top quark sector

1) **Decays** of top quark pairs

Assumptions:

- 1.1 Kinematic part of the decays: same for d,s,b
- 1.2 Unitarity gives $|V_{tb}|^2 + |V_{td}|^2 + |V_{ts}|^2 = 1$
- \rightarrow allows to "translate" to |V_{tb}|

BR (t \rightarrow Wb) \propto R = $|Vtb|^2/(|Vtb|^2 + |Vtd|^2 + |Vts|^2)$

tt events: measurement of R

 \rightarrow allows to translate to $|\textit{V}_{tb}|$ in the unitarity assumption

$$\mathcal{R} = |V_{tb}|^2$$
 $|V_{tb}| > 0.975$ at the 95% CL

CKM measurements in the top quark sector

1) **Decays** of top quark pairs

Assumptions:

1.1 Kinematic part of the decays: same for d,s,b

1.2 Unitarity gives $|V_{tb}|^2 + |V_{td}|^2 + |V_{ts}|^2 = 1$

 \rightarrow allows to translate to $|V_{tb}|$

2) Single top quark production cross section

Assumptions:

2.1 dependence in the decay is neglected - only effects affecting production!

2.2 No enhancement from $|V_{td}|$ or $|V_{ts}|$ initiated processes is considered.

- Often referred to as |*flv V*tb|: probing an "altered" coupling

BR (t \rightarrow Wb) \propto R = $|Vtb|^2/(|Vtb|^2 + |Vtd|^2 + |Vts|^2)$

|Vtb| in single t processes

Huge success in LHC combination of Run-I analyses:

- Leading process: single top quarks in the *t*-channel,
- Sub-leading effects: single t + W associated production

New idea for CKM extraction in the t-channel

Paper <u>TOP-17-012</u>: described in this talk! \rightarrow submitted to PLB: <u>https://arxiv.org/abs/2004.12181</u> The idea is to get "the best of both worlds" and probe at the same time:

Production mechanism:

Decay mechanism:

Advantages with this approach

Paper <u>TOP-17-012</u>: described in this talk! \rightarrow submitted to PLB: <u>https://arxiv.org/abs/2004.12181</u> The idea is to get "the best of both worlds" and probe at the same time:

Production + decay:

 $\sigma x BR (t \rightarrow Wb) \propto |Vtb|^2 x |Vtb|^2 / (|Vtb|^2 + |Vtd|^2 + |Vts|^2)$

SM measurement:

 \rightarrow More precise |Vtb| determination exploiting stronger dependence from |Vtb|⁴

 \rightarrow Possibility to probe |Vtd|, |Vts| at tree level

Possible other fit interpretations:

 \rightarrow gradually releasing $% \left(a_{1}^{2}\right) =0$ assumptions where new physics might affect the process

Single top quark *t*-channel analysis

t-channel analysis: signals considered

Considering contributions from different combinations of tWb, tWd, tWs vertices:

This is the mode considered for **single t** inclusive **cross sections and properties measurements**

 \rightarrow Usually only CKM vertex in production is considered when looking for deviations

t-channel analysis: signals considered

Considering contributions from different combinations of tWb, tWd, tWs vertices:

t-channel analysis: signals considered

Considering contributions from different combinations of tWb, tWd, tWs vertices:

^b 24

Analysis setup: data samples and simulation

Analysis is based on proton-proton collision data at 13 TeV collected in 2016. \rightarrow Integrated luminosity = 35.9 fb⁻¹

 \rightarrow **Triggers:** 1 muon OR 1 electron

Initial values of CKM elements taken from low energy measurements:

	Production	Decay	Cross section \times branching fraction (pb)
Signal 1 ST(b,b)	tWb	tWb	217.0 ± 8.4
Signal 2 <mark>ST(b,q)</mark>	tWb	(tWs+tWd)	0.41 ± 0.05
Signal 3 ST(a b)	∫tWd	tWb	0.102 ± 0.015
5161101 5 51 (4 ,6) ×	tWs	tWb	0.92 ± 0.11

In the analysis, $|V_{td}/V_{ts}|$ is kept constant \rightarrow the relative normalization of the Signal 3 processes is fixed, only variations due to systematic effects.

The baseline selection for all signals

All three processes should have:

- at least 2 jets
- at least 1 b-jet

* η is the pseudorapidity in the CMS frame
 ** tau leptonic decays are part of the signal

Background processes: "prompt" leptons

Top quark pair production

- 1 top quark decays leptonically to Wb
- 1 top decays either leptonically or hadronically

Typical features:

high jet multiplicity, top quark decay features "central" jets in the detector

W+jets production

- b- or c- associated production
- W decaying leptonically

Typical features:

low jet multiplicity, no top quark decay features, "central" jets in the detector

Background process: QCD multijet

QCD multijet

- bb pair with one b not tagged
- lepton from B meson decay chain
- additional radiation can mimic forward jet

Typical features: low $p_{T,lepton}$ and $p_{T,miss}$ leptons and p_{miss} co-linear with jets

Shapes estimated from data

- 1) QCD enriched sideband defined inverting lepton identification criteria
- 2) All non-QCD are subtracted in sideband according to simulation

Selected categories

Categorisation as n-jets m-tags:

2-jets 1-tag: allows ST(b,b) discrimination from W+jets and tt
3-jets 1-tag: allows ST(b,b) vs ST(b,q) discrimination
3-jets 2-tag: helps with ST(b,b) extraction and tt background control

- Differently populated by signal or backgrounds processes
- QCD estimated in situ
- All signals are considered in all categories

W boson and top quark reconstruction

W transverse mass M_{TW}: from one lepton and $p_{x,miss}, p_{y,miss}$ (proxy for $p_{x,v}, p_{y,v}$)

$$m_{\rm T}^{\rm W} = \sqrt{(p_{{\rm T},\ell} + p_{\rm T}^{\rm miss})^2 - (p_{x,\ell} + p_x^{\rm miss})^2 - (p_{y,\ell} + p_y^{\rm miss})^2}.$$

Top quark 4 momentum: from one lepton, one jet, and p_{x,miss}, p_{y,miss}

 \rightarrow To obtain $p_{z,v}$ we impose constraint on the W mass, which is set to its central value from PDG.

In summary:

For each **event** \rightarrow **one W** candidate \rightarrow m_{TW}

For each **jet in the event** \rightarrow **one top** quark candidate \rightarrow top quark 4-momentum

QCD estimation and reduction

- 1 extract $\rm M_{\rm TW}$ shape from QCD-enriched region
- 2 Maximum Likelihood fit to data M_{TW} distribution. Two components: **QCD** vs **Non-QCD**
- 3 Require on $M_{TW} > 50$ GeV to reduce QCD contamination
- QCD negligible in 3-jets 2-tag

Uncertainties:

- All systematic uncertainties are propagated through the procedure
- 50% uncertainty on the QCD yield from the fit

Definition of discriminating variables

Dedicated selection in the three regions:

- \rightarrow define a forward jet j' in each region
- \rightarrow reconstruct top quark candidates with all other jets

2-jets 1-tag

- $\boldsymbol{j'}$ defined as the non b-tagged jet
- Multivariate discriminant to separate ST(b,b) from W+jets and tt

3-jets 1-tag

- j' defined as non b-tagged jet with the highest $|\eta|$;
- W+jets and tt depletion requirement : $j' |\eta| > 2.5$
- Multivariate discriminant to separate ST(b,b) vs ST(b,q) and ST(q,b)

3-jets 2-tag

- $\boldsymbol{j'}$ defined as the non b-tagged jet
- Multivariate discriminant to separate **ST(b,b)** vs tt

Features of signal 1 ST(b,b)

b-jet comes from top quark:

- the correct permutation is ℓv + b jet

2nd b at low pt from gluon splitting:

- When not passing selection: 2-jets 1-tag
- When not passing b-tagging: 3-jets 1-tag
- When selected: 3-jets 2-tags

Discrimination from tt and W+jets: $|\eta|_{i'}$, top quark features

Features of signal 2 ST(b,q)

top quark decays to light quark:

- the correct permutation is ℓv + non-b jet - reconstructing the top quark with the b-jet gives you the wrong permutation

Main region: 3-jets 1-tag

Discriminating variables against *ST*(b,b): b-discriminator of secondary top, kinematics of top quark candidates

Features of signal 3 ST(q,b)

top quark decays to b quarks:

- the correct permutation is lv + b jet
- **Main region:** 3-jets 1-tag for ST(q,b) or 2-jets 1-tag for $ST(d_v b)$

Discriminating variables against *ST*(b,b):

- For non d_v initiated processes, top quark kinematics is the same as ST(b,b), additional non b-jets can be present.
- For d_v initiated process PDF do alter top quark rapidity.

Multivariate discriminants and fit

Separate **Boosted Decision Trees** trained in each category \rightarrow training performed on muons, features are similar across leptons

Simultaneous Maximum likelihood fit to data in the 6 categories

2-jets 1-tag, for *ST*(all) vs **tt** and **W+jets** discrimination:

Multivariate discriminants and fit

Separate **Boosted Decision Trees** trained in each category \rightarrow training performed on muons, features are similar across leptons

Simultaneous Maximum likelihood fit to data in the 6 categories

3-jets 1-tag, for Signal 1 vs Signal 2,3 discrimination:

Fit models and interpretation

Fit parametrization: signal strengths

Fit strengths written in terms of measured vs injected cross sections

$$\mu_{b} = \frac{\sigma_{t-ch,b}^{obs} \mathcal{B}(t \to Wb)^{obs}}{\sigma_{t-ch,b} \mathcal{B}(t \to Wb)}$$
$$\mu_{sd} = \frac{\sigma_{t-ch,b}^{obs} \mathcal{B}(t \to Ws, d)^{obs} + \sigma_{t-ch,s,d}^{obs} \mathcal{B}(t \to Wb)^{obs}}{\sigma_{t-ch,b} \mathcal{B}(t \to Ws, d) + \sigma_{t-ch,s,d} \mathcal{B}(t \to Wb)}$$

Where:

 μ_{b} = signal strength of **ST(b,b)**

 μ_{sd} = signal strength of sum of the two **ST(q,b) + ST(b,q)**

Fit results

 μ_{sd} can be written as function of $|Vtd|^2 + |Vts|^2$, and |Vtd|/|Vts|

 $-|V_{td}|/|V_{ts}|$ appears in a term contributing by 5% to the total strength.

- This term comes from Signal 3 $ST(d_v, b)$. The analysis is not sensitive to floating this parameter, due to the similarity with the ST(b,b) signature.

 \rightarrow Performing the fit one finds:

$$\mu_{\rm b} = 0.99 \pm 0.03 \,(\text{stat+prof}) \pm 0.12 \,(\text{nonprof})$$

 $\mu_{\rm sd} < 87 \,\text{at} \,95\% \,\text{confidence level (CL)},$

The Standard Model measurement

Imposing unitarity, one finds σ x BR (t \rightarrow Wb) \propto $|Vtb|^2$ x $|Vtb|^2$

$$\mu_{\rm b} = \frac{|V_{\rm tb}|_{\rm obs}^4}{|V_{\rm tb}|^4}$$
$$\mu_{\rm sd} = \frac{|V_{\rm tb}|_{\rm obs}^2 (1 - |V_{\rm tb}|_{\rm obs}^2)}{|V_{\rm tb}|^2 (1 - |V_{\rm tb}|^2)}$$

 \rightarrow Here there is only 1 effective parameter for the signal

 \rightarrow Uncertainty on $|V_{tb}|$ is reduced because of the fourth power dependence. Limits at 95% CL:

$$|V_{tb}| > 0.970$$

 $|V_{td}|^2 + |V_{ts}|^2 < 0.057.$

Releasing unitarity assumption

Parametrizing under different hypotheses on scenarios, widths may vary

Defining a convenient reduced width $\widetilde{\Gamma}_q$ such that $\Gamma_q~=~\widetilde{\Gamma}_q|V_{
m tq}|^2$

$$\begin{split} \mu_{\rm b} &= \frac{|V_{\rm tb}|_{\rm obs}^4 \widetilde{\Gamma}_{\rm q}^{\rm obs} \Gamma_{\rm t}}{|V_{\rm tb}|^4 \widetilde{\Gamma}_{\rm q} \Gamma_{\rm t}^{\rm obs}} \\ \mu_{\rm sd} &= \frac{|V_{\rm tb}|_{\rm obs}^2 (|V_{\rm ts}|_{\rm obs}^2 + |V_{\rm td}|_{\rm obs}^2) \widetilde{\Gamma}_{\rm q}^{\rm obs} \Gamma_{\rm t}}{|V_{\rm tb}|^2 (|V_{\rm ts}|^2 + |V_{\rm td}|^2) \widetilde{\Gamma}_{\rm q} \Gamma_{\rm t}^{\rm obs}} \end{split}$$

Releasing unitarity different assumptions can be made on the way decay and production are affected. We consider two scenarios

$$\label{eq:rescaled} \to \Gamma_t \mbox{ and } \Gamma_q \mbox{ have the same expression as SM, but } |V_{tq}| \mbox{ can vary freely.} \\ \to \Gamma_q \mbox{ has the same expression as SM, } \Gamma_t \mbox{ and } |V_{tq}| \mbox{ can vary freely}$$

Releasing unitarity assumption: case 1

Vtq varies freely: the CKM matrix comes from effective couplings.

If we consider $\prod_{i=1}^{n}$ varying only because of the coupling strength, one finds:

$$\mu_{b} = \frac{|V_{tb}|_{obs}^{4}}{|V_{tb}|^{4} (|V_{tb}|_{obs}^{2} + |V_{ts}|_{obs}^{2} + |V_{td}|_{obs}^{2})}$$
$$\mu_{sd} = \frac{|V_{tb}|_{obs}^{2} (|V_{ts}|_{obs}^{2} + |V_{td}|_{obs}^{2})}{(|V_{ts}|^{2} + |V_{td}|^{2}) (|V_{tb}|_{obs}^{2} + |V_{ts}|_{obs}^{2} + |V_{td}|_{obs}^{2})}$$

The corresponding fit results in:

$$|V_{tb}| = 0.988 \pm 0.027 \text{ (stat+prof)} \pm 0.043 \text{ (nonprof)}$$

 $|V_{td}|^2 + |V_{ts}|^2 = 0.06 \pm 0.05 \text{ (stat+prof)} ^{+0.04}_{-0.03} \text{ (nonprof)}$

Releasing unitarity assumption: case 2

The width also varies freely: the main width variations come from kinematic effects or new physics decays.

 \rightarrow The current experimental uncertainty on Γ_t is in fact much greater than the precision we have on $|V_{tb}|$, making this possibly the leading effect

Signal strengths:

$$\mu_{\rm b} = \frac{|V_{\rm tb}|_{\rm obs}^4 \Gamma_{\rm t}}{|V_{\rm tb}|^4 \Gamma_{\rm t}^{\rm obs}}$$
$$\mu_{\rm sd} = \frac{|V_{\rm tb}|_{\rm obs}^2 (|V_{\rm ts}|_{\rm obs}^2 + |V_{\rm td}|_{\rm obs}^2) \Gamma_{\rm t}}{|V_{\rm tb}|^2 (|V_{\rm ts}|^2 + |V_{\rm td}|^2) \Gamma_{\rm t}^{\rm obs}}$$

We measure:

$$\begin{split} |V_{tb}| &= 0.988 \pm 0.011 \, (\text{stat+prof}) \pm 0.021 \, (\text{nonprof}) \\ |V_{td}|^2 + |V_{ts}|^2 &= 0.06 \pm 0.05 \, (\text{stat+prof}) \pm 0.04 \, (\text{nonprof}) \\ R_{\Gamma} &= 0.99 \pm 0.42 \, (\text{stat+prof}) \pm 0.03 \, (\text{nonprof}). \end{split}$$

Summary and outlook

We performed a **first measurement** of CKM matrix elements in single top quark events relieving many of the assumptions done in previous analyses.

This approach allows to significantly improve the precision on $|V_{tb}|$ achievable in single top events without having to rely on any additional assumptions on the decay.

The obtained measurement is comparable with the equivalent in tt events:

$$|V_{\rm tb}| > 0.970$$

Comparison with previous single top quark measurements is possible by specifying the assumption to be considered on the decay.

By leaving the top quark width fully floating one finds:

 $|V_{\rm tb}| = 0.988 \pm 0.024$

Summary and outlook

The analysis for the first time **probes the CKM element modules** |*V*td| and |*V*ts| at tree level in single top quark processes, yielding:

$$|V_{\rm td}|^2 + |V_{\rm ts}|^2 < 0.057$$

Under circumstances that allow to violate CKM unitarity, one can extract limits on these new couplings, yielding:

$$|V_{\rm td}|^2 + |V_{\rm ts}|^2 = 0.06 \pm 0.06$$

The route undertaken here shows promise for future measurements, that could aim at increasing sensitivity to $|V_{td}|/|V_{ts}|$, and considering other scenarios for the measurement of partial and total widths.

thank you!

Additional material

The baseline selection for all signals

$TT \rightarrow Ivb Ivq$

Top quark pairs with 1 tWq vertex

- Populates 3-jet 1-tag region
- Our analysis exploits the correlation between b-tagging and reconstruction of the correct top quark
- The probability to get the correct b-jet to be the one to reconstruct our top quark is 50% regardless of whether it's a b-jet or non-b jet
- Case 1: the b-tagged jet gives the best top
- Case 2: the non-b -tagged jet gives the best top
- Simply by considering the total yield and the residual power of the b discriminator has proven insufficient to discriminate this channel vs systematic variations

Systematic uncertainties

Profiled: treated within the fit as additional nuisance parameters **Non-profiled:** repeat fit with varied scenario, uncertainty = difference in the fit results

List of uncertainties and impact on *t*-channel cross section measurement:

Treatment	Uncertainty	$\Delta\sigma_{ST_{b,b}}/\sigma$ (%)	Critoria to profile:	
	Lepton trigger and reconstruction	0.50	Criteria to prome:	
	Limited size of simulated event samples	3.13		
	t ī modelling	0.66	1) Prior distribution is independent from	
	Pileup	0.35	our observed quantity	
Profiled	QCD background normalisation	0.08		
Promea	W+jets composition	0.13	\rightarrow most instrumental yes	
	Other backgrounds $\mu_{\rm R}/\mu_{\rm F}$	0.44	\rightarrow signal modeling no	
	PDF for background processes	0.42	0.42 \rightarrow background modeling ves	
	b tagging	0.73		
	Total profiled	3.4	2) No strong correlation with other systematic	
Nonprofiled	Integrated luminosity	2.5	effects affecting observed quantity	
	JER	2.8		
	JES	8.0		
	PDF for signal process	3.8	→ jes, jer no	
	Signal $\mu_{\rm R}/\mu_{\rm F}$	2.4	→ luminosity no	
	ME-PS matching	3.7		
	Parton shower scale	6.1		
	Total nonprofiled	11.5		
Total uncertai	nty	12.0		

The CMS detector

Detectors \rightarrow Onion Structures:

- Inner Detector
- E.M. and Hadronic Calorimeters
- Muon Spectrometers
- \Box Magnet System: \rightarrow superconducting solenoid magnet (coils of wire)