

GRavitational Effects on Entangled PHOtoNs

PI: Giuseppe Vallone

Università degli Studi di Padova

16 Giugno 2020

Experiments testing Quantum Mechanics or General Relativity

State of the art

Experiments testing Quantum Mechanics or General Relativity

State of the art

Experiments testing Quantum Mechanics or General Relativity

State of the art

Experiments testing Quantum Mechanics or General Relativity

No experiment has shown directly the combined effect of QM and GR

Can genuine general relativistic effects be detected on quantum systems?

Can Quantum Field Theory in curved-spacetime be tested?

Any gravitational influence detected on massless particles is a witness of genuine general relativistic effects Any gravitational influence detected on massless particles is a witness of genuine general relativistic effects

Proposals to test the gravitational effect on photons

D. Rideout, *et al.*, Class. Quant. Grav. 29, 224011 (2012)

New J. Phys. 19, 033028 (2017)

↓ vita

Any gravitational influence detected on massless particles is a witness of genuine general relativistic effects

Proposals to test the gravitational effect on photons

1

None of them has been experimentally implemented GREEPHON overcomes the difficulties of the above proposals

Challenges with satellites

Class. Quant. Grav. 29, 224011 (2012).

- For a Low Earth Orbit satellite at 1000 km, the gravitational fractional redshift is at the 10⁻¹⁰ level
- Necessary to know the relative speed with an accuracy of 10⁻¹¹c ~ 3 mm/s
- With geostationary satellites no Doppler shift and larger redshift: disadvantage of large losses in the propagation

New J. Phys. 19, 033028 (2017)

- Low effect at the lab scale: the gravitational redshift is of the order of 10⁻⁵ rad with 100 km of fiber spool
- Stabilization of the interferometer during the movement

OBJECTIVE of GREEPHON

To experimentally demonstrate a general relativistic effect on single and entangled photons

The change in the photon energy can be observed by converting the redshift into a measurable phase $\delta \phi_g$ by exploiting two unbalanced interferometers.

Methodology

Methodology

$$\delta \phi_g \simeq 2\pi n_f \nu_p \frac{\Delta h \Delta L_0}{c^3} g \simeq 8 mrad$$

Time-bin interference in free space

Interference of two time-bins observed on ground after the reflection by a moving satellite at a distance of thousands of kilometres

G. Vallone, et al., Interference at the Single Photon Level Along Satellite-Ground Channels, Phys. Rev. Lett. 116, 253601 (2016)

Gravitational effect on entanglement

The number of coincidences depends on the gravitational induced phase

$$\delta \phi_g \simeq 2\pi n_f \nu_p \frac{\Delta h \Delta L_0}{c^3} g \simeq 8 mrad$$

- ASSUMPTION: gravitational redshift of classical electromagnetic waves is a scientific fact
- Same laser used to stabilize both TX and RX interferometers
- no phase shift on entangled photons imply that the classical laser and the entangled photons experienced the same gravitational redshift

Stabilization of the MZ interferometer at μrad level

External modulation

- modulate the phase of the calibration laser at Ω_m
- Detect the PD signal at frequency Ω_m

Internal modulation

- modulate interferometer phase at Ω_n
- Detect the PD signal at frequency Ω_n

Shot noise limit: precision lower bounded by $\Delta(\delta\Phi_g)\geq \frac{1}{\sqrt{N_{det}}}$

High generation rate of photons

GREEPHON

Shot noise limit: precision lower bounded by $\Delta(\delta\Phi_g)\geq \frac{1}{\sqrt{N_{det}}}$

- High generation rate of photons
- Efficient transmission of photons

adaptive optics

GREEPHON

Shot noise limit: precision lower bounded by $\Delta(\delta\Phi_g)\geq \frac{1}{\sqrt{N_{det}}}$

- High generation rate of photons
- Efficient transmission of photons

adaptive optics

From Optics Express 20, 23846 (2012):

"single telecom photons can be announced at 4.4 MHz rate with 45% heralding efficiency"

with $w_0 \simeq 5 \ cm$ the Rayleigh range is $z_0 \simeq 1 \ km$

- Aperture diameter $D = 10 \ cm$ at transmitter
- aperture diameter $D' = 10 \ cm$ at receiver
- ▶ 3 *db* geometric losses with d = 5 km link due to diffraction
- ► ~ 0.5 db/km attenuation in free-space due to scattering/absorption (good visibility conditions)

Detection

ID281

SUPERCONDUCTING NANOWIRE

Detector Specifications

Parameter	Min	Typical	Max	Units
Wavelength range	400		2500	nm
Optical fibre type		SMF		
Efficiency range at 1550nm	75	80		%
Dark count rate at 0.8K			100	Hz
Maximum count rate		15		MHz
Jitter (FWHM)		50		ps
Pulse width		adjustable		
Output connector		SMA		
Operating temperature		0.8		Κ
Dimensions		13 x 20 x 2	5	mm
Optical connector		FC/PC		

Commercial ID281 Superconducting Nanowire (SNSPD) of IdQuantique:

- quantum efficiency at 1550 nm (80%),
- low dark counts (100Hz)
- high Timing Resolution (50 ps): required to reject background radiations

Sezione di Padova

G. Vallone

M. Bazzan

G. Ciani

- Quantum Optics
- Free-space propagation
- Interferometry
- thermo-mechanic stabilization

L. Conti

P. Villoresi

Sezione di Bologna

M. Prevedelli

frequency control of lasers

Sezione di Trieste

Quantum Gravity ►

- WP1: development of quantum source and receiver.
- WP2: characterization of stabilization lasers
- WP3: interferometers realization and stabilization
- WP4: Development of theoretical framework and new proposals
- WP5: Lab tests
- WP6: On-field experiment

GANTT and Budget

CREEPHON CANTT	SEMESTER 1			SEMESTER 2						SEMESTER 3						SEMESTER 4						SEMESTER 5						SEMESTER 6							
GREEPHON GANTI	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9 :	10 1	11 12
WP1																																			
Task 1.1																																			
Task 1.2																																			
Task 1.3																																			
WP2																																			
Task 2.1																																			
Task 2.2																																			
WP3													_												_						_				
Task 3.1																																			
Task 3.2																																			
Task 3.3																																			
WP4													_																						
Task 4.1																																			
Task 4.2																																			
WP5													_																						
Task 5.1	Τ																																		
Task 5.2														1		1	1	1								1									
WP6																				-	-	-	-	-	-	-	-	-	-	-					
Task 6 1						_															-	-		_	_	_	_	_	_						
Task 6.2	-																				-	-			-	-	-	-	-						
Task 6.3	-																								-	-	-	-	-						
WP7																									-	-	-	-	-	_	-	-	-		_
Task 7.1		_	_			_																													
Task 7.2		-	-						-					-	1	-	-	-		1				-		-									
Task 7.3		Ľ													Ľ																				

GREEPHON

	Year 1	Year 2	Year 3	Total
Padova	264 k€	309 k€	76 k€	649 k€
Bologna	58 k€	3 k€	3 k€	64 k€
Trieste	38 k€	38 k€	38 k€	114 k€

GREEPHON: great challenges but a step forward in our understanding of the basic principles of physics

 First direct test of the validity of Quantum Field Theory in curvedspacetime

 Stimulate further researches on the overlap between General Relativity and Quantum Mechanics

Quantum information applications

Quantum information applications

 Optical communication at large distances

- Quantum information applications
- Optical communication at large distances

Metrology and sensing applications

Extension to future experiments

- local absolute calibration of the MZ interferometers
- complete and self-consistent demonstration of gravitational induced phase shift

- long-term extension as satellite-based experiment
- gravitational phase shift three orders of magnitude larger

GREEPHON

A new method to demonstrate, **for the first time**, a general relativistic effect on quantum interference of photons

In particular, first demonstration of gravitational effects on entangled systems

EXTRA SLIDES

Cortina

CV of G. Vallone

UNIVERSITÀ	1998-2002: undergraduate								
DEGLI STUDI DI TORINO	2002-06: PhD in Jan. 2006, thesis on String Theory								
The Nordic Institute for Theoretical Physics	2004 : 11 months as "Marie Curie training site" fellow at NORDITA institute (Copenhagen)								
SAPIENZA UNIVERSITÀ DI ROMA	2006-11: Post-doc in experimental Quantum Optics								
Universită decli Studi di Padova	2011-2019: Ricercatore a tempo indeterminato 2019-now: Professore Associato								

92 publications on peer-reviewed journals including 3 Nature Communications, 1 Science Advances, 1 Optica, 19 Phys. Rev. Lett.

	Google Scholar	Scopus	ISI Web Of Science
# of citations:	4230	2855	2616
h-index:	32	28	27