HH Reconstruction

Laura Buonincontri Detector and Physics simulation 26/05/2020

Selection of events for the BDT

- Selection of signal and background events with $N_{\rm jets}{>}3$
- Jets are combined in pairs and for each combination the invariant mass is calculated
 (m_{ii},m_{kl})
- The following relation is calculated for each pair: $(m_h-m_{ij})^2+(m_h-m_{kl})^2$
- The pair of jets which minimize the above relation, is selected
- Requirement on the minimum P_T of all jets: **20 GeV**

Input variables for training

• Selected variables for training:

Module of the vectorial sum of 4 jets momentum

Maximum angle between jets

Evaluation of input variables and classification

Correlation between input variables.

ROC curve

Classifier output distributions for signal and background events

Boosted Decision Tree application

• BDT applied to signal and test samples

• Cut on the BDT output is applied and the significance is calculated

Significance calculation

Significance =
$$\frac{S}{\sqrt{S+B}}$$

S= σ_{HH} Br(H \rightarrow b \overline{b})² L_{int} W_{sign}/N_{sign}
B= σ_{bbbb} L_{int} W_{bkg}/N_{bkg}

- W_{sign} and W_{bkg} are the number of events of signal and background which remains after cuts, and re-weighted for the b-tag efficiency
- It is required that one jet for each pair is tagged
- b-tag efficiencies as a function of the P_{T} jet
- Only jets with $P_T > 40$ GeV are tagged

Results

BDT cut	S	В	Significance	Δσ/σ
-0.06	50	469	2.21	0.45
-0.03	49	417	2.28	0.44
0	47	340	2.39	0.42
0.03	43	266	2.44	0.41
0.06	37	172	2.55	0.39
0.09	28	102	2.47	0.40
0.12	19	51	2.22	0.45
0.15	8	16	1.73	0.58
0.18	2	3	1.06	0.94

$$S = \sigma_{HH} Br(H \rightarrow b\overline{b})^2 L_{int} W_{sign} / N_{sign}$$
$$B = \sigma_{bbbb} L_{int} W_{bkg} / N_{bkg}$$

Other distributions: jets P_{T}

Other distributions: ellicity angles

Next steps

Optimization of the BDT:

- Increase the number of events as input for the BDT
- Try to use other input variables for the BDT training and test