

Update on $\Lambda \rightarrow n\pi^0$ background 19 May 2020

Matthew Moulson INFN Frascati

Outline

- Conclusions from last time
- Polarization in $\Lambda \rightarrow n\pi^0$ decay
- p_{\perp} reconstruction systematics
- Weights and normalization
- Next steps
- Possible projects and contributions

Thoughts on $\Lambda \rightarrow n\pi^0$ background

New conclusion:

It is imperative to further reduce *A*s in FV by several orders of magnitude

Items requiring further study:

- Scattered $\Lambda \rightarrow n\pi^0$ may not be confined to beam kinematic region
 - Λ s from inelastic events produced much closer to the FV, but will also have much lower energy and can be eliminated with π^0 energy cuts
- There are uncertainties concerning:
 - Λ production rate and momentum spectrum
 - Λ polarization/angular distribution

(generator uses isotropic 2-body decay)

Examined in detail as prerequisite to further studies

- Uncertainties in Λ production rate and momentum spectrum can be studied by:
 - Comparison of results with different generators (Geant4 vs FLUKA)
 - Direct sampling of existing results, including results from NA48?
 - My first studies were based on parameterization of Kichimi 1979 data used in NA48 MC

As created by unpolarized beam on unpolarized target are *polarized*:

- Discovered in 1976
- Polarization perp. to Λ production plane (required by parity conservation)
- Magnitude increases monotonically from 0 at p_{\perp} = 0 to 20% at $p_{\perp} \sim$ 1.6 GeV
- Decreases slowly with A of target species: P(Cu or Pb)/P(Be) = 75%
- Does not depend strongly on longitudinal momentum (?)
- Does not depend strongly on beam momentum up to SPS energies (?)
- Mechanism for polarization not completely understood
 - From interference of at least two different spin-dependent amplitudes
 - In CQM, *u* and *d* quarks are in singlet state \rightarrow spin of *A* = spin of *s* quark

FIG. 4. The gluon bremsstrahlung mechanism discussed in the text. Heller et al. '78

In $\Lambda \to n\pi^0$ decay, *n* is preferentially emitted along Λ polarization axis

$$\frac{dN}{d\cos\theta} \propto 1 + \alpha P\cos\theta$$

$$\hat{\mathbf{P}} = \frac{\mathbf{p}_{\text{beam}} \times \mathbf{p}_{\Lambda}}{|\mathbf{p}_{\text{beam}} \times \mathbf{p}_{\Lambda}|} \qquad \hat{\mathbf{P}} \cdot \hat{\mathbf{p}}_{n}^{\text{CM}} = \cos\theta$$

e.g. polarization along *x*-axis if beam vertically incident

parity conservation in Λ production \rightarrow no longitudinal polarization

Λ decay asymmetry parameter: α = 0.692 for $Λ → nπ^0$ BES-III 2018

For p + Be at 400 GeV

$$P(x_F, p_{\perp}) = (C_1 x_F + C_2 x_F^3)(1 - e^{C_3 p_{\perp}^2})$$

Lundberg 1989 Heller 1983

Neutron decay angle in CM for P = -0.25

Polarization in zOptical $\Lambda \rightarrow n\pi^0$ decay generator

$$P(x_F, p_{\perp}) = (C_1 x_F + C_2 x_F^3)(1 - e^{C_3 p_{\perp}^2})$$

$\Lambda \rightarrow n\pi^0$ with polarization

1.672G $\Lambda \rightarrow n\pi^0$ with Malensek/FLUKA spectrum, decay weights

KLEVER: Update on $\Lambda \rightarrow n\pi^0$ **background** – M. Moulson – 19 May 2020

Kiever

$\Lambda \rightarrow n\pi^0$ with polarization

Stage	Acceptance	Change	Events in 5 yrs	Change
Produced $\Lambda \rightarrow n\pi^0$	1		1.672 × 10 ¹⁴	
Decay in FV	4.709 × 10 ⁻⁶	1.003	7.875 × 10 ⁸	1.003
2γ on LKr	7.866 × 10 ⁻⁶	0.997	1.316 × 10 ⁹	0.997
+ Reconst. in FV	0.3262	1.006	4.292 × 10 ⁸	1.003
+ $r_{\rm min}$ > 35 cm	0.3399	1.007	1.459 × 10 ⁸	1.011
+ p_{\perp} > 120 MeV	0.1162	0.998	1.694 × 10 ⁷	1.009
+ $\theta_{\pi 0}$ > 3.5 mrad	0.4650	0.987	7.879 × 10 ⁶	0.996
+ $ heta_{\pi 0}$ vs p_{\perp} cut	< 4.27 × 10 ⁻⁵	1.18*	< 336 (no events left)	1.17*

Notes:

- Generation at 2x statistics of previous sample (raw scale = 1:100000)
- Little change with respect to generation without polarization (2020v3 vs v1)
- To what extent is the decay angle distribution maintained through event selection stages?

$\Lambda \rightarrow n\pi^0$ with polarization

KLEVER: Update on $\Lambda \rightarrow n\pi^0$ **background** – M. Moulson – 19 May 2020

$\Lambda \rightarrow n\pi^0$ without polarization

 $\Lambda \rightarrow n\pi^0$ with 2γ on MEC, **no weights** – log scale

• Jacobian peak in $p_{\perp}(\pi^0)$ smeared towards lower values \rightarrow also reconstructed $\theta(\pi^0)$

• What gives rise to long tail towards unphysically high p_{\perp} ?

 $\Lambda \rightarrow n\pi^0$ with 2γ on MEC, **no weights** – log scale

• High- p_{\perp} tail comes from downstream decays, close to MEC

• Calorimeter energy, position resolution unimportant compared to beam divergence

• But beam p_{\perp} mainly given to neutron: true $p_{\perp}(\pi^0)$ maximum ~120 MeV

 $\Lambda \rightarrow n\pi^0$ with 2γ on MEC, **no weights** – log scale

• Like FV cut, r_{min} cut cleans up p_{\perp} reconstruction (but FV cut does most of the work)

• r_{\min} cut not very helpful for Λ rejection: can be retuned for K_L rejection

 $\Lambda \rightarrow n\pi^0$ with 2γ on MEC, **no weights** – log scale

- Most of the high- p_{\perp} tail is from the size of the beam spot at a given z
 - π^0 reconstruction assumes decay is on axis!
- p_{\perp} reconstruction depends on beam opening angle more than MEC performance
 - In principle beam opening angle is fixed by size of collimators
- Best strategy to improve p_{\perp} reconstruction is to reduce beam opening angle

 $\Lambda \rightarrow n\pi^0$ with 2γ on MEC, **no weights** – log scale

 $\Lambda \rightarrow n\pi^0$ with 2γ on MEC + FV and r_{min} cuts, **no weights** – log scale

 $\Lambda \rightarrow n\pi^0$ with 2γ on MEC, **no weights** – log scale

Weights and normalization

Weighting scheme for decay distribution:

- Uniform z distribution for 0 < z < 250 m ($\Delta z = 250$ m)
- Events weighted by $W = \Delta z / \lambda \times \exp(-z/\lambda)$, with $\lambda = pc\tau_A/m_A$
- Generation scale known
- Number of observed events from sum of weights
- Effective scale from errors on sum of weights
- What is the effective scale when zero counts observed?

- Calculate average weight for events in sideband
- Quote 90%CL by assigning this weight to 2.30 evts

.5 .4		Old	New
.3	n _{side}	397	10
.2 .1	$\langle W \rangle$	2.7 × 10 ⁻⁷	1.3 × 10 ⁻³

Why does $\langle W \rangle$ increase so much? Implies higher decay probability?

Weights and normalization

Decay weights for $\Lambda \rightarrow n\pi^0$ with 2γ on MEC + FV and r_{min} cuts

- Boundaries in (p_⊥, θ) plane are from FV cuts and int/ext calorimeter radii
- Angular acceptance increases with *z*
- *p*_⊥ misreconstruction effects are largest in downstream region
 - Background in high- *p*⊥ selection will come from this region
- At given z, decay weight increases with Λ momentum
 - These events will dominate weight if any enter into sample

KLEVER: Update on $\Lambda \rightarrow n\pi^0$ **background** – M. Moulson – 19 May 2020

$\Lambda \rightarrow n\pi^0$ events by selection stage

- 130 m < z < 170 m, r_{min} > 35 cm
- FV and r_{min} cuts, $p_{\perp} > 120 \text{ MeV}$
- Events in (p_{\perp}, θ) sideband

Events passing all cuts:

- K_L momentum > 200 GeV
- Downstream edge of FV: z > 150 m
- Well reconstructed: $E(\pi^0) \sim 40 \text{ GeV}$

Move FV further downstream?

Not likely to help by itself with current layout:

- $\lambda_{eff} \sim 16$ m near downstream end of FV
- p_{\perp} reconstruction blows up near calorimeter
- Need to extend LAV coverage to handle odd pairs from $K_L \rightarrow \pi^0 \pi^0$
- Maybe possible (or even necessary) if beam angle increased

Tighten beam collimation?

Potentially helpful but needs study:

- Main effect of beam opening angle spread is via quality of constraint in transverse plane for π^0 reconstruction (beam spot size)
 - Contribution of p_{\perp} (beam) to $p_{\perp}(\pi^0)$ is minor
- Substantial reduction of beam solid angle (e.g. 0.4 → 0.3 mrad) could help to eliminate <u>residual</u> Λ → nπ⁰ and will definitely improve rejection for K_L → π⁰π⁰
- Will reduce K_L flux (e.g. $0.3^2/0.4^2 = 0.56$)
- More intelligent use of PSD/higher angular resolution in calorimeter?

Effect on p_{\perp} : $\Delta \theta = 0.4$ vs 0.3 mrad

KLEVER: Update on $\Lambda \rightarrow n\pi^0$ **background** – M. Moulson – 19 May 2020

KIEVER

Reject neutrons from $\Lambda \rightarrow n\pi^0$ with dedicated hadronic SAC module? Maybe not impossible:

- Would need to reject e.g. 90% of neutrons from $\Lambda \rightarrow n\pi^0$
- Many beam neutrons would veto → stringent timing requirements

150 GeV hadronic energy threshold sufficient for 90% neutron efficiency

Reject neutrons from $\Lambda \rightarrow n\pi^0$ with dedicated hadronic SAC module? Maybe not impossible:

- Would need to reject e.g. 90% of neutrons from $\Lambda \rightarrow n\pi^0$
- Many beam neutrons would veto → stringent timing requirements

KLEVER: Update on $\Lambda \rightarrow n\pi^0$ **background** – M. Moulson – 19 May 2020

n in SAC = 423 MHz n (> 100 GeV) = 82 MHz n (> 150 GeV) = 16.3 MHz n (> 200 GeV) = 2.84 MHz

n in beam = 1109 MHz

~90% rejection efficiency for $\Lambda \rightarrow n\pi^0$ can be obtained with hadronic SAC module:

- $E_n > 150 \text{ GeV}$ threshold
- ~20 MHz additional veto rate
- Current veto rate ~ 140 MHz

Longer beam line?

Small increase not likely to help significantly

- $\lambda_{eff} \sim 16$ m: Adding 30 m from target to start of FV gives ~7x reduction
- About 10 m of space remaining in hall in current layout

Reduce beam energy?

Likely effective, requires study

- $400 \rightarrow 300 \text{ GeV} = 7.5 \rightarrow 10 \text{ decay lengths in beamline: } \sim 12x \text{ reduction}$
- Need to reoptimize production angle
- Will reduce *K*_L flux
- Requires negotiation with other NA users

Increase targeting angle?

Likely effective, requires study

- Reduces Λ flux and softens momentum spectrum: fewer Λ in FV
- Will reduce K_L flux and soften K_L spectrum
 - If *K_L* momentum reduced too much may need to make changes to layout (e.g., extend LAV coverage)
- Will require new target design
 - Larger transverse dimensions larger target image
 - High-*Z* target: substantially more complicated, more surrounding material
- Feasibility of large angles (e.g. 20 mrad) needs to be studied from standpoint of primary beam steering

Targeting angle considerations

M. Van Dijk, CERN-ACC-NOTE 2018-0066

Could try to increase production angle to 12, 16 or even 20 mrad

- FLUKA and Geant spectra already parameterized by Maarten
 - Malensek reasonable up to 12 mrad; overestimates Λ production at 20 mrad
- Move from 2.4 \rightarrow 8 mrad decreased \varPi in FV by 370x
- Increases FV acceptance: K_L in FV decreased only ~2x after reoptimization

Beam angle change: Current status

Reviewing K_L and Λ yields vs production angle:

- Obtained from Maarten root files with FLUKA and Geant4 spectra + all fit results and code
- Need to integrate spectra beyond 16 mrad
- Would like to explore fit systematics in high momentum tails at larger angles

First samples for angle scan produced:

- Scan 8 to 24 mrad in 4 mrad steps
- 167M/step $\Lambda \rightarrow n\pi^0$ with decay weights (1/10 of usual statistics)
- 100M/step $K_I \rightarrow \pi^0 v v$ •
- Focus first on signal acceptance and Λ rejection:
 - Substantial layout changes may be needed
 - $K_L \rightarrow \pi^0 \pi^0$ is time-consuming to generate

Beam angle change: Next steps

Reoptimization needed when production angle changes:

- Fiducial volume (moves downstream with increasing angle)
- Beam opening angle (decreases, as per above)
- LAV coverage (extends further in polar angle, less boost)
- Energy threshold on MEC for signal events (decreases, lower π^0 energy)
- Efficiency requirements (maybe)
- Analysis cuts (try to increase acceptance)

Systematic exploration of parameter space vs rapid identification of a possible solution

• What if the best solution also requires a slight reduction of the beam energy (e.g. to 350 GeV)?

Need to modify and re-run Maarten's FLUKA beamline simulations after converging on new beam angle and layout modifications

Ongoing projects

- 1. Angle change and reoptimization of experiment
- 2. Beamline optimization and simulation (FLUKA)
 - Re-run beamline simulation, esp. flux and rate estimates
- 3. KLMC
 - Summer student program
 - Goal to restart work on KLMC to make it fully useable
 - Framework etc.: K. Richardson (USA), in coordination with other students
 - Preshower: D. Hunt (Birmingham) to simulate basic design
 - MEC/Shashlyk: J. Conragan (USA) to simulate basic design
 - SAC: D. Soldi (volunteer), interested for APEIRON: algorithms for online *γ/n* separation to run in SAC front end (test case)
 - Longer term
 - Need to systematically validate and extend studies done so far:
 - Scattered Λ and cascading hyperon decays
 - Neutron halo
 - Decays to charged particles, including radiative decays

Deadlines

FPCP 2020: 12 June

- Cristina L. has a 30 min talk on future kaon experiments after NA62 & KOTO
 - I am not comfortable with a KLEVER 8 mrad hard sell at this point
 - A few slides with the caveat that we are considering a change to the beam angle to further decrease the Λ background?

Snowmass

- EoI (2 pages) due 31 August: Need a firm idea of KLEVER feasibility at new angle and changes needed to layout
- Paper due 31 July 2021: White-paper level of detail?

CERN Seminar

 Postponed to September: not yet scheduled. Ideally would have enough detail about the new layout for a seminar-level presentation

White paper with NA62?