

Simulazioni: detector e ricostruzione

P. Andreetto, N. Bartosik, L. Buonincontri, <u>M. Casarsa</u>, F. Collamati, A. Gianelle, D. Lucchesi, C. Riccardi, P. Sala, P. Salvini, L. Sestini, I. Vai

INFN Muon Collider Meeting – June 3, 2020

- Detector overview:
 - the tracking system;
 - the calorimeter system;
 - the muon system.
- status of low and high level event reconstruction;
- ongoing activities.

- As a starting point, use CLIC detector model and reconstruction software, outcome of many years of tuning and optimization (for 3-TeV ee collisions, though):
 - https://github.com/iLCSoft.
- If needed, revisit both the detector and the reconstruction strategy to cope with:
 - much higher levels of background (beam-induced background);
 - higher μμ collision energies (6, 10 TeV).

Detector overview

The tracking system

Vertex Detector (VXD)

- 4 double-sensor barrel layers:
 - ✤ at r = 3.1, 5.1, 7.4, 10.2 cm;
 - 50-µm thick Si sensors;
- 4+4 double-sensor disks:
 - ◆ at |∆z| = 8.0, 12.0, 20.0, 28.0 cm;
 - 50-µm thick Si sensors.
- Inner Tracker (IT)
 - 3 barrel layers (100-µm thick):
 - at r = 12.7, 34.0, 55,4 cm;
 - 7+7 disks (100-µm thick):
 - At |∆z| = 52.4, 80.8, 109.3, 137.7, 166.1, 194.6, 219.0 cm;
- Outer Tracker (OT)
 - ▶ 3 barrel layers (100-µm thick):
 - ♦ at r = 81.9, 115.3, 148.6
 - 4+4 disks (100-µm thick):
 - ◆ at |∆z| = 131, 161.7, 188.3, 219 cm.

Calorimeter system

- Electromagnetic calorimeter (ECAL)
 - 40 layers of 1.9-mm W absorber and silicon pad sensors;
 - ▶ 5x5 mm² cell granularity;
 - 22 X₀ + 1 λ₁.
- Hadron Calorimeter (HCAL)
 - 60 layers of 19-mm steel absorber and plastic scintillating tiles;
 - 30x30 mm² cell granularity;
 - 7.5 λ_I.

Muon detectors

Muon Detectors

- RPC sensor layers interleaved in the magnet's iron return yoke;
- 7 layers in the barrel ans 6 layers in the endcaps;
- 30x30 mm² cell size.

First adjustments to ILCSOFT

Tracker hits timing

- The time-of-arrival spread of the hits from the beam-induced bkg provides a powerful handle to mitigate their number:
 - we assume a time resolution of 50 ps (100 ps) for the 50-µm (100-µm) thick Si sensors;
 - "read out" only hits compatible with particles coming from the interaction point.

• Hit density due to the beam-induced background for one bunch crossing without and with the hit time window selection:

Calorimeter timing

N. Bartosik

Calorimeter occupacy

 μ^{\pm} beams

Energy deposited in the calorimeters at each bunch-crossing:

ECAL	HCAL
2.5 TeV	0.5 TeV

Single photon + beam-induced bkg

N. Bartosik

• Track reconstruction in a muon gun sample with:

► 0.1 GeV < p_T < 10 GeV, 0° < ϕ < 360°, 8° < ϑ < 172°.

NB: Tracking algorithm not yet optimized for new vertex detector.

Ongoing activities

- Ongoing activities:
 - implementation of a more realistic simulation of the tracker readout that includes:
 - a segmentation of the Si sensors into pixels;
 - digitization of the pixel signals;
 - pixel clusterization and hit reconstruction.
 - rejection of tracker spurious hits exploiting double layer correlations;
 - tuning of pattern recognition and track finding to cope with the beam-induced background;
 - inclusion of muon detectors in event reconstruction.