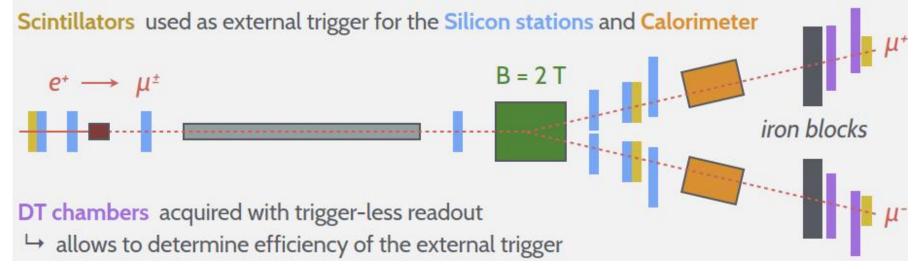


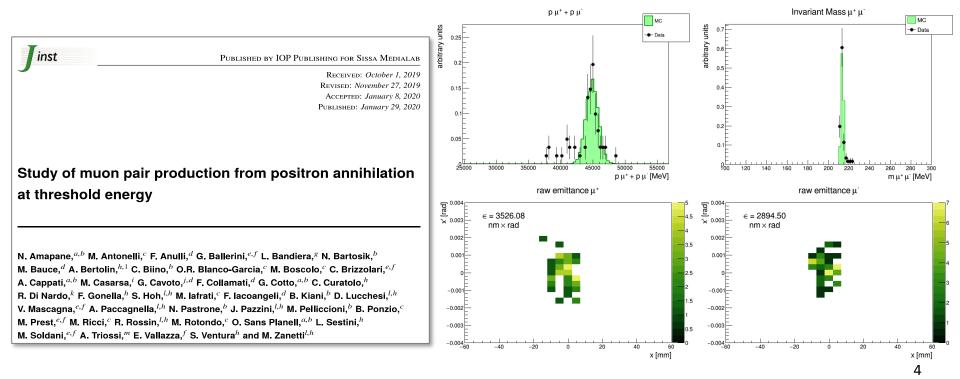
LEMMA TB

Nicola Amapane for the LEMMA-TB proponents


Motivation

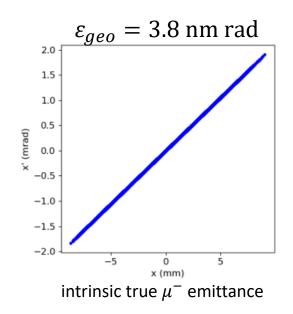
- Experimentally measure the key parameters of the LEMMA approach
 - **Emittance** of emerging μ beam
 - $\mu^+\mu^-$ production **cross-section at threshold**
 - properties of **spent** e^+ **beam** (transverse emittance and energy spectrum)
 - Effect of the target material/thickness
- Although these are theoretically known and can be obtained from simulations, precise measurements do not exist at the $\mu^+\mu^-$ production threshold
 - GEANT does not include e.g. near-threshold Coulomb enhancements, and has not been experimentally tested in this regime

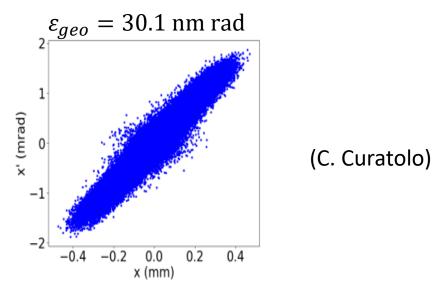
Past TBs


• 1 week in 2017 at H2, **1+1 weeks in 2018 at H4** (North Area)

Experience and Results

- Low-budget: mostly re-use available detectors and DAQ
- Lot of experience gained, decent result published (JINST 15 P01036)
- However, severe limitations in the setup did not allow pursuing high precision measurements
 - Resolution of the available tracking system too modest
 - Too large trigger/DAQ dead time
 - A single week of data taking barely sufficient to set up detectors and trigger properly




The challenge

- "intrinsic" emittance of emerging μ 's is tiny, and buried deep into the emittance of the incoming e^+ beam
 - In order to get a meaningful result, the measured muon kinematics must be corrected by that of the incoming positron:

$$x = x(\mu) - x(e^+)$$
$$x' = x'(\mu) - x'(e^+)$$

Requires extremely good tracking resolution both before and after the target

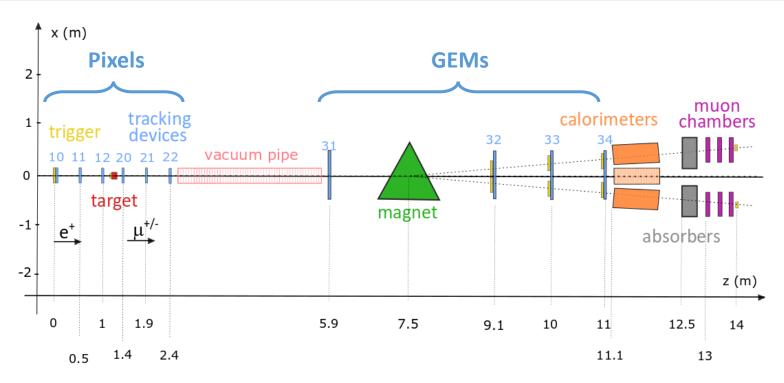
Positron-corrected measured μ^- emittance with reasonably achievable tracking system

The challenge (cont.)

- Cross section measurement requires an efficient trigger and DAQ system with small dead-time, ability to assess the trigger efficiency, and well controlled acceptance
 - Trigger and readout dead time were major limiting factors in past TBs
- >1 week is essential to set up, calibrate and align detectors, set up and validate the trigger, and take data

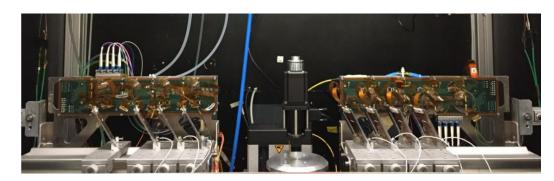
More like a small experiment than a typical test beam

Future TBs

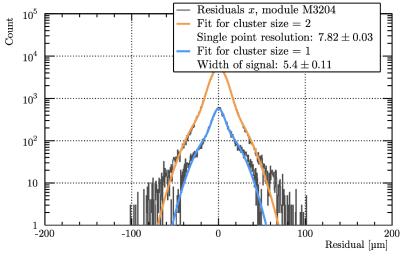

- Experiment being redesigned accordingly
- Request for 3-weeks beam time in H2 submitted to SPSC
 - http://cds.cern.ch/record/2712394

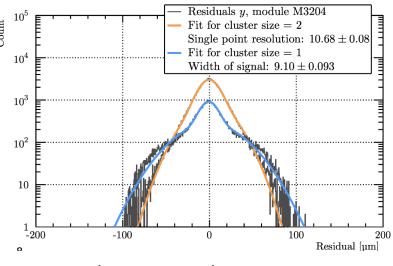
CERN-SPSC-2020-004

LEMMA-TB: an experiment to measure the production of a low emittance muon beam


N. Amapane^{a,b}, M. Antonelli^c, F. Anulli^d, N. Bacchetta^h, N. Bartosik^b, M. Bauce^d, A. Bertolin^h, M. Bianco^m, C. Biino^b, O. R. Blanco-Garcia^c, M. Boscolo^c, A. Braghieri^q, A. Cappati^{a,b}, F. Casaburo^{l,d}, M. Casarsaⁱ, G. Cavoto^{l,d}, N. Charitonidis^{*m}, A. Colaleo^p, F. Collamati^d, G. Cotto^{a,b}, D.Creanza^p, C. Curatolo^h, N. Deelen^t, F. Gonella^h, S. Hoh^{n,h}, M. Iafrati^c, F. Iacoangeli^d, B. Kiani^b, D. Lucchesi^{n,h}, V. Mascagna^{e,f}, S. Mersi^m, A. Paccagnella^{n,h}, N. Pastrone^b, J. Pazzini^{n,h}, M. Pelliccioni^b, B. Ponzio^c, M. Prest^{e,f}, C. Riccardi^{q,r}, M. Ricci^c, R. Rossin^{n,h}, M. Rotondo^c, P. Salvini^q, O. Sans Planell^{a,b}, L. Sestini^h, L. Silvestris^p, A. Triossi^o, I. Vai^{q,s}, E. Vallazza^f, R. Venditti^p, S. Ventura^h, P. Verwilligen^p, P. Vitulo^{q,r}, and M. Zanetti.^{n,h}

Proposed layout




- Fast, high-resolution pixel telescopes (CMS modules) before and after the target
- Fast GEM detectors from CMS before and after the magnet
- Combination of several calorimeters
- 4+2 Muon chambers (triggerless readout); ready
- Improved (integrated, low dead time) DAQ system
- Improved trigger system

Pixels

- 12 new modules (from CMS upgrades) being produced:
 - 20 kE total, need to grant planned SJ to PD (10 kE)
- PD will take care of mechanical supports
- Expertise and technical support from the CHROMIE community
 - We'll borrow all read-out and powering/control electronics
- Need to develop an appropriate trigger system (TTC based)

N. Deelen, N. Bacchetta

GEMs

- 2 Dedicated Hi-res 10x10 triple-GEM
 - X-Y, 260 μm pitch (75 μm resol.)
- Standard CMS GE2/1 "M1" and "M2" modules in muon arms
 - Trapezoidal, 364-593 µm resol.

969 All read out by CMS Phase 2 DAQ M1 **GEM GEM** x-coord x-coord M2 10x10 10x10 X-Y X-Y magnet M2 1544

What needs to be done

- A lot of work ahead!
 - Work ongoing to define the proper configuration and positioning of the detectors
 - Complete detectors, mechanic, readout
 - Need to develop DAQ and trigger
 - Integration
 - Reconstruction software
 - •