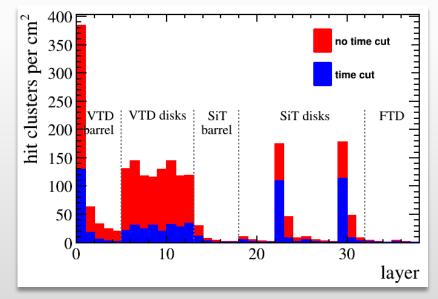

Physics and Software Framework Simulation

P. Andreetto, N. Bartosik, L. Buonincontri, M. Casarsa, F. Collamati, A. Gianelle, D. Lucchesi, C. Riccardi, P. Sala, P. Salvini, L. Sestini, I. Vai

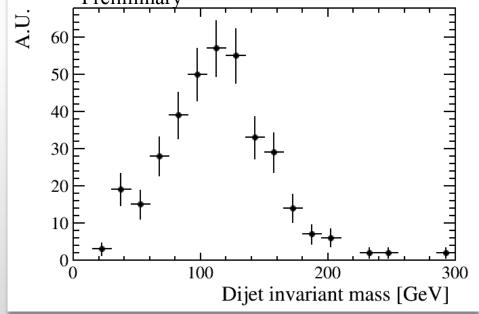


INFN Meeting - D. Lucchesi

Detector Response Simulation at $\sqrt{s} = 1.5$ TeV

Use the simulation/reconstruction tools previously developed within the MAP collaboration based on the ILCroot package: it supports signal + MARS15 background merging

Magnetic coil 3.57 T -Muon detector Pre-shower detector Nozzle -Vertex and tracking detector Calorimeter detector Effects of beam-induce background can be mitigated by exploiting "5D" detectors, i.e. including timing


*b***\overline{b}** Studies at $\sqrt{s} = 1.5$ TeV

 $\mu^+\mu^- \to HX, H \to b\bar{b}$ and $\mu^+\mu^- \to b\bar{b}X$ generated $@\sqrt{s} = 1.5 \ TeV$ with PYTHIA 8

Process	cross section [pb]
$\mu^+\mu^- \to \gamma^*/Z \to bb$	0.046
$_{\mu}^{\mu}\mu^{-} ightarrow \gamma^{*}/Z \gamma^{*}/Z ightarrow b ar{b}$ +X	0.029
$\mu^+\mu^- \to \gamma^*/Z\gamma \to bb\gamma$	0.12
$\mu^+\mu^- ightarrow HZ ightarrow b\overline{b}$ +X	0.004
$\mu^+\mu^- \rightarrow \mu^+\mu^- H \ H \rightarrow b\bar{b}$ (ZZ fusion)	0.018
$\mu^+\mu^- \to \nu_\mu\nu_\mu H H \to bb$ (WW fusion)	0.18 Signal

 $H \rightarrow b\bar{b}$ +beam-induced background

background fully simulated Preliminary A.U. 60 50 40

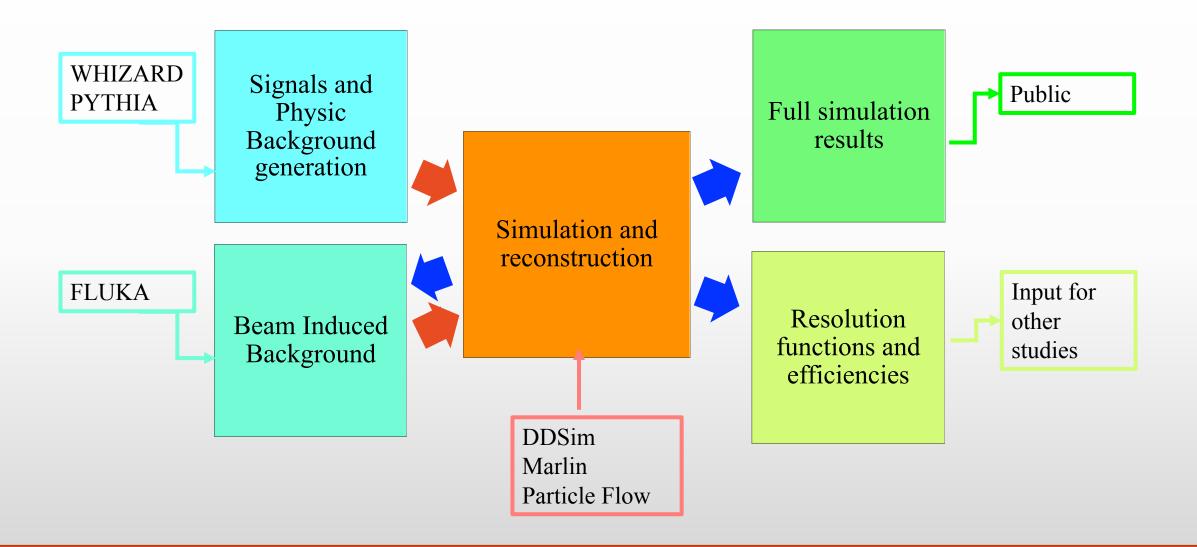
 $\mu^+\mu^- \rightarrow H\nu\bar{\nu} \rightarrow b\bar{b}\nu\bar{\nu}$ + beam-induced

Higgs *bb* Couplings Results

- The instantaneous luminosity, \mathcal{L} , at different \sqrt{s} is taken from MAP
- The acceptance, *A*, the number of signal events, *N*, and background, *B*, are determined with simulation

\sqrt{s}	A	ϵ	L	\mathcal{L}_{int}	σ	N	В	$\frac{\Delta\sigma}{\sigma}$	∆g _{Hbb} 8Hbb
[TeV]	[%]	[%]	$[cm^{-2}s^{-1}]$	$[ab^{-1}]$	[fb]			[%]	[%]
1.5	35	15	$1.25 \cdot 10^{34}$	0.5	203	5500	6700	2.0	1.9
3.0	37	15	$4.4 \cdot 10^{34}$	1.3	324	33000	7700	0.60	1.0
10	39	16	$2 \cdot 10^{35}$	8.0	549	270000	4400	0.20	0.91

	\sqrt{s} [TeV]	\mathcal{L}_{int} [ab ⁻¹]	$\frac{\Delta g_{Hbb}}{g_{Hbb}}$ [%]	
	1.5	0.5	1.9	
Muon Collider	3.0	1.3	1.0	
	10	8.0	0.91	
	0.35	0.5	3.0	
CLIC	1.4	+1.5	1.0	
	3.0	+2.0	0.9	


CLIC numbers are obtained with a model-independent multi-parameter fit performed in three stages, taking into account data obtained at the three different energies

Results published in open access as Detector and Physics Performance at a Muon Collider Accepted for publication JINST

Software Info

- □ The work done so far used the MAP framework
- □ We decided to move to a Future Collider Framework, ILCSoftware.
- □ We are setting up a GRID VO, muoncoll.infn.it everybody can register
- □ We are preparing the environment to be able to submit to the GRID/cloud
- □ Right now we have a cloud VM that can be installed anywhere
- □ Some resources, machines and disk space is available on CloudVeneto
- Code on github

Simulation Framework

Physics Program

The idea is to study the following items in the next months at the center of mass energies: 1.5, 3 10 TeV

Higgs fermions couplings

 $\mu^{+}\mu^{-} \rightarrow HX, H \rightarrow b\overline{b}$ $\mu^{+}\mu^{-} \rightarrow HX, H \rightarrow \tau^{+}\tau^{-}$

Higgs bosons couplings

 $\mu^+\mu^- \to HX, H \to W^+ W^ \mu^+\mu^- \to HX, H \to ZZ$

 $\mu^+\mu^- \to HX$, $H \to \gamma \gamma$

Higgs self-couplings $\mu^+\mu^- \rightarrow HHX, H \rightarrow b\overline{b}, H \rightarrow b\overline{b}$ $\mu^+\mu^- \rightarrow HHHX, H \rightarrow b\overline{b}, H \rightarrow b\overline{b}, H \rightarrow b\overline{b}$

First look at HH

 $\Box \ \mu^+\mu^- \to HH\nu\bar{\nu} \to b\bar{b}b\bar{b}\nu\bar{\nu}$ simulated $\square \mu^+\mu^- \rightarrow b\bar{b}b\bar{b}\nu\bar{\nu}$ inclusive simulated

with WHIZARD 2.8.2 at $\sqrt{s} = 3$ TeV

 $S = \sigma_{HH} Br(H \rightarrow b\overline{b})^2 L_{int} W_{sign} / N_{sign}$ BDT cut Significance Δσ/σ S В $B = \sigma_{hbhb} L_{int} W_{bkg} / N_{bkg}$ 0.45 -0.06 50 469 2.21 -0.03 49 417 2.28 0.44 0 47 340 2.39 0.42 4b 0.18 43 0.03 266 2.44 0.41 0.16 -HH0.06 37 172 2.55 0.39 0.14 0.12 0.09 28 102 2.47 0.40 0.12 19 51 2.22 0.45 0.08 0.06 0.15 8 16 1.73 0.58 0.04 2 0.18 3 1.06 0.94 0.02 Laura Buonincontri -0.24-0.18-0.12 -0.060.12 0.18 0.24 0.3 0 0.06 BDT

Use the $\sqrt{s} = 1.5$ TeV detector and beaminduced background.

 $\mathcal{L}_{int} = 1.3 \text{ ab}^{-1} \rightarrow t = 4 \cdot 10^7 \text{ s}$

General Info

We meet every two weeks on Tuesday afternoon, next meeting will be next Tuesday June 9;
We have a e-mailing list <u>muon_collider_studies@lists.infn.it</u>, please contact us if you want to subscribe;
At the moment we have a google site where we keep the relevant information <u>MuonCollider</u>;