## Pixel analog part design in TIIMM for STRONG project

Weiping REN 2020.06.05



## Contents





#### The TIIMM

The TIIMM (Tracking and Ions Identifications with Minimal Material budget ) project in STRONG aims to create a new class of instrument combining precision tracking and energy loss measurement in conditions where minimizing the crossed material is mandatory.

#### TIIMM expectations and status

- 1st prototype (TIIMM-1) in late 2020
- 2nd prototype (TIIMM-2) in 2021-2022
- Both are small size prototypes
- Status: preliminary prototype (TIIMM-0) submitted with MIMOSIS-1.

## >>> STRONG - Requirements preliminary



#### Requirements for hadron physics

- Particles to be detected: protons to Oxygen ions (200-400 MeV/u) and consider proton close to 1 GeV
- Spatial resolution 5 to 10 μm
- Hit rate few kHz/cm<sup>2</sup> (in any case < MHz/cm<sup>2</sup>)
- Sensor surface area few cm<sup>2</sup> (2x2 or 1x3 probably OK)
- Power dissipation compatible with air cooling < 200 mW/cm<sup>2</sup>

#### Sensor specifications

- Signal charge assuming 25 µm sensitive thickness: 500 e<sup>-</sup> to 500 000 e<sup>-</sup> (1-1000 dynamic ← to be confirmed)
- Digitization over 4 to 6 bits (4 will be probably not enough due to dynamic...)
- Pixel pitch 20 to 40 μm (the smaller, probably the better)
- Frame rate 1-10 kHz  $\leftrightarrow$  integration time 100 to 1000  $\mu$ s (if T<sub>int</sub> ~  $\mu$ s possible, better)

### >>> TIIMM-0 - General description





TIIMM0 sensor layout

- CMOS Monolithic Active Pixel Sensor
- Design in TowerJazz 180 nm process
- Submitted in March, 2020
- Chip area: 2.2 mm \* 1.5 mm
- Matrix: 32 (rows) \* 16 (columns) (the last column has the analog output for test)
- Pixel pitch: 40 μm
- Position and energy measurements







- TOT (6 bits) 6 bits register in pixel
- Trimming DAC (4 bits) for threshold adjustment
- Possibility to mask pixels

### >>> TIIMM-0 - Pixel layout design





Pixel size: 40 μm \* 40 μm Analog part: 40 μm \* 15 μm Digital part: 40 μm \* 25 μm

40 µm

7

#### >>> TIIMM-0 - CSA with Krummenacher feedback





#### >>> TIIMM-0 - Simulation performance of CSA





- Cf = 1fF, Cd = 2 fF
- Gain about 120 mv/ke-, ENC = 42 e -
- There is a overshot problem in the CSA design.



| Qin=500 e-                         | NOM 27° <b>C</b> | FAST 0°C | SLOW 85°C |
|------------------------------------|------------------|----------|-----------|
| CSA Power[nA]                      | 146.8            | 150.2    | 149.9     |
| ENC[e-]                            | 41.98            | 39.99    | 43.93     |
| Amplitude of the CSA<br>output[mV] | 55.89            | 55.68    | 60.09     |
| Baseline of the CSA<br>output[mV]  | 399.7            | 399.8    | 399.3     |

#### >>> TIIMM-0 – Performance of the CSA (MC simulation|Mismatch)



Monte Carlo simulation, spread of the amplitude of the CSA output (Qin=500 e-)

Monte Carlo simulation, CSA output baseline offset

Offset spread of the CSA
 Sigma: 15.09 mV
 Range: 359 mV ~ 440 mV

## >>> TIIMM-0 – Performance of the CSA (MC simulation|Process)



Monte Carlo simulation, spread of the amplitude of the CSA output (Qin=500 e-)

Monte Carlo simulation, CSA output baseline offset

Offset spread of the CSA baseline Sigma: 0 mV CURIEN

#### >>> TIIMM-0 - Comparator





• The comparator is designed with a two stage amplifier and an inverter to form the digital signal.

## >>> TIIMM-0 - Pulse width vs Qin (0~100Ke-)



- The pulse width (0.5  $\mu$ s<sup>~</sup>12  $\mu$ s) increase with the Qin(from 0 to 100 Ke-).
- Threshold=387 e-.
- ToT output is not linear (at least at low Qin)  $\rightarrow$  calibration needed.

#### >>> TIIMM-0 – Trimming DAC





- The Trimming DAC provides the adjustable threshold for the Comparator to treat with the problem of the offset of the CSA
  4 bits
- Range: 331 mV ~ 473.8 mV (cover the offset of the CSA)



- ENC = 42 e-  $\rightarrow$  is that good enough for our project?
- ToT output is non-linear  $\rightarrow$  require calibration.
- Resolution on Qin varies non-linearity with Qin → input to physics simulation for cross check.
- In this design, the trimming DAC can cover the offset range of the CSA. But it only has 4 bits. Its performance needs to be verified by chip test.







- In this design, we want to apply this new architecture of amplifier. This amplifier structure can get higher gain which can reduce the ENC.
- Due to the spread of the CSA output baseline is large, and it is common in pixel sensor. We are considering about using AC coupling between CSA and comparator or a trimming DAC with better performance to reduce the threshold dispersion.

#### >>> TIIMM-1 - CSA with Krummenacher feedback



Qin (k)

## >>> TIIMM-1 - AC coupling





- Add capacitor between CSA and comparator to realize AC coupling (consuming an area for capacitor). And the DC-level will be provided by a reference voltage Vdc through a NMOS transistor. The simulation shows that the spread of the COMP\_IN after the capacitor is  $\sigma = 26$  nV.
- But the comparator will still bring offset even though we use AC-coupling to eliminate the pixel-to-pixel baseline spread (threshold offset). Thus we still need a trimming DAC afterwards to reduce the offset of the comparator. AC-coupling + Triming DAC (simple one, only used to reduce the offset of the comparator)
- Or DC-coupling + Triming DAC (high performance)

### >>> TIIMM-1 - Trimming DAC (reference paper)



#### A multi-level offset trimming DAC

- 7-bit trim DAC for tuning I<sub>DAC</sub> current
- Two different ways to control the tuning range (bit br or bit bb)
- Addition of an extra offset at the input from outSH\_ref line (bits bosf<0:1>)

#### Performance

• Pixel-to-pixel baseline level spread before correction is about  $\sigma = 17 \text{ mV}$ rms. It is reduced to  $\sigma = 1.524 \text{ mV}$ rms(using only 7-bit trim DACs)



Fig. 7. (a) Circuit for applying the threshold voltage and offset correction-trim DAC is represented by two current sources, (b) simplified scheme of trim DAC (M0 transistor dimensions are  $W_0/L_0 = 0.3 \,\mu m/2 \,\mu m$ ).

IEEE Transactions on Nuclear Science, Volume 63, Issue 2, April 2016, doi: 10.1109/TNS.2016.2527834 20

## >>> New pixel architecture with ADC





#### For the next prototype, if we will try the column ADC structure?

- Need peaking holding circuit in pixel.
- Reduce the area (In ToT structure, the register for ToT in the pixel consumes a large area)
- Column level, can get higher bits.
- The output amplitude of the Amplifier has better linearity vs input charge.
- The dynamic range is bound to be smaller with the ADC structure (unless we can switch the capacitance)





- The TIIMM-0 design has been summarized. The chip contains 32 rows and 16 columns with a pixel pitch of 40 μm. A 6-bit ToT architecture has been applied for energy measurement.
- The ENC of the TIIMM-0 is  $42 e^{-1}$ .
- The 4-bit Trimming DAC in TIIMM-0 provides the adjustable threshold for the Comparator to treat with the problem of the offset of the CSA. And the performance need to be verified through the chip test.
- In TIIMM-1, more studies about the amplifier were carried out.
- AC-coupling scheme between the CSA and comparator was proposed.
- A multi-level trimming DAC to solve the offset problem with calibration was presented (reference).
- ADC solution seems more complex, not considered for the time being.

## The end

## Thanks!

# Predicting ToT values (TIIMM-0 proto)

