
The 12 factors app
https://12factor.net/

https://en.wikipedia.org/wiki/Twelve-Factor_App_methodology

1

https://12factor.net/
https://en.wikipedia.org/wiki/Twelve-Factor_App_methodology

Immutable infrastructure
https://www.digitalocean.com/community/tutorials/what-is-immutable-
infrastructure

“With immutable infrastructure, once an artifact is created in the system it does
not change via user modifications.”

2

https://www.digitalocean.com/community/tutorials/what-is-immutable-infrastructure
https://www.digitalocean.com/community/tutorials/what-is-immutable-infrastructure

Infrastructure as code
https://en.wikipedia.org/wiki/Infrastructure_as_code

3

https://en.wikipedia.org/wiki/Infrastructure_as_code

Learning Docker & K8S
Plenty of online resources, videos, courses… Google is your friend

https://kubernetes.io/docs/tutorials/kubernetes-basics/

https://www.digitalocean.com/community/tutorials/an-introduction-to-kubernetes

https://learning.oreilly.com/library/view/kubernetes-up-and/9781492046523/

And more advanced resources:

CERN K8S seminars: https://indico.cern.ch/category/8202/

4

https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://www.digitalocean.com/community/tutorials/an-introduction-to-kubernetes
https://learning.oreilly.com/library/view/kubernetes-up-and/9781492046523/
https://indico.cern.ch/category/8202/

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

Declarative vs imperative
https://thenewstack.io/kubernetes-design-and-development-explained/

In an imperative API, you directly issue the commands that the server will
carry out, e.g. “run container,” “stop container,” and so on.

In a declarative API, you declare what you want the system to do, and the
system will constantly drive towards that state.

6

https://thenewstack.io/kubernetes-design-and-development-explained/

K8S components

7

Our little K8S cluster

8

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
kube-lb01 Ready <none> 288d v1.10.2
kube-node01 Ready <none> 288d v1.10.2
kube-node02 Ready <none> 288d v1.10.2
kube-node03 Ready <none> 288d v1.10.2
kube-node04 Ready <none> 288d v1.10.2
kube-node05 Ready <none> 288d v1.10.2
kube-node06 Ready <none> 288d v1.10.2
kube-node07 Ready <none> 288d v1.10.2
kube-node08 Ready <none> 288d v1.10.2
kube-node09 Ready <none> 288d v1.10.2
kube-node10 Ready <none> 288d v1.10.2
kube-node11 Ready <none> 288d v1.10.2
kube-node12 Ready <none> 288d v1.10.2
kube-node13 Ready <none> 273d v1.10.2
kube-node14 Ready <none> 72d v1.10.2

K8S in action: small demo

K8S for CNAF storage services

GPFS and containers
https://developer.ibm.com/storage/2018/12/20/spectrum-scale-and-containers/

What is Storage Enabler for Containers (SEC)?

Simply put, Storage Enabler for Containers (SEC) is an interface that is delivered
via IBM Spectrum Connect that enables IBM Storage products (e.g. Spectrum
Scale, Spectrum Virtualize, Spectrum Accelerate, and IBM FlashSystem) to
connect to Kubernetes clusters. Once the interface is configured, SEC allows
containerized applications to make use of IBM Storage to dynamically provision
Persistent Volumes (PVs) through Persistent Volume Claims (PVCs).

11

https://developer.ibm.com/storage/2018/12/20/spectrum-scale-and-containers/

K8S for data access and management services
Data access & management services (StoRM, StoRM WebDAV, XRootD, GridFTP,
…) are deployed on K8S on T1 resources

GPFS (but Ceph could also be used where appropriate) provides persistent
storage

Pros:

• Immutable infrastructure, Self-healing, autoscaling, continuous delivery, …

Cons:

• It’s a sea change

12

