DGWG parallel session, September 29th 2010

Fwd-PID and Bwd-EMC Studies SL recoil analyses

Alejandro Pérez INFN – Sezione di Pisa A. Stocchi, N. Arnaud, L. Burmistrov LAL – Université Paris XI

SEZIONE DI PISA

Outline

- Detector Geometries
- Samples used
- Fwd-PID studies strategy
- Bwd-EMC studies strategy
- Results on Fwd-PID Studies
- Results on Bwd-EMC Studies
- Summary and outlook

Alejandro Perez, DGWG parallel session Sep. 29th 2010

Detector Geometries

- Baseline configuration: BaBar with reduced boost ($\beta \gamma = 0.28$)
- Generated geometries:
 - Baseline + Bwd-EMC + Fwd-PID (quartz) (DG_4)
 - Baseline + Bwd-EMC + Fwd-PID (air) (DG_4a)

July/September 2010 Production

Signal samples:

- → $B^+ \rightarrow K^+ \nu \nu (DG_4/DG_4a)$: 4.02/3.03 M
- → $B^0 \rightarrow K^0 \nu \nu$ (DG_4/DG_4a): 3.00/3.00 M
- → B⁰→K^{*0}vv (DG_4/DG_4a): 3.00/2.94 M
- → B⁺→K^{*+}vv (DG_4/DG_4a): 2.97/3.00 M
- Background Samples:
 - → B⁺B⁻ SL-cocktail (DG_4/DG_4a): 213.68/116.16 M (~80% of total)
 - → B⁰B⁰ SL-cocktail (DG_4/DG_4a): 180.72/102.08 M (~80% of total)

All samples generated with bkg mixing NoPairs (V0.2.5 Rev 307)

Fwd-PID Studies Strategy

- Latest studies from full simulation showed that fTOF material has negligible effect on Fwd-EMC
- Generate two samples to estimate Fwd-PID impact: DG_4 and DG_4a
- Compare DG_4 and DG_4a to estimate the effect of the fTOF material Result: effect is negligible => DG_4 and DG_4a samples equivalent
- Store at the n-tuples two selectors for the same particle type and tightness (i.e.)
 - KaonLHTightSelector (no use of timing information from fTOF)
 - KaonLHTight_fTOFSelector (use of timing information from fTOF when available)
- Merge DG_4 and DG_4a samples (DG_4+DG_4a)
- Use this sample to estimate fTOF impact:
 - **fTOF out place:** use KaonLHTightSelector
 - **fTOF in place:** use KaonLHTight_fTOFSelector
- Gain due to fTOF will be the increase in efficiency

PID requirements

Tag-Side:

- → Use KaonLHTight
- Signal-Side:
 - → Use KaonLHTight

Bwd-EMC Studies Strategy: Veto device

Results on Fwd-PID Studies

Alejandro Perez, DGWG parallel session Sep. 29th 2010

- Events in the Fwd region (15-25 degrees) are 5% of the total sample if cos(θ) (CM) is flat
- f-TOF seems to recover the events in the Fwd
- Gain from fTOF not expected to be higher than 5% for each identified kaon

Fwd-PID studies: $B^0 \rightarrow K^0 \gamma \gamma$

Fwd-PID studies: $B \rightarrow K^{*+}vv$

Fwd-PID studies: $B \rightarrow K^{*+}vv$

Fwd-PID studies: $B \rightarrow K^{*+}vv$

Fwd-PID studies: $B \rightarrow K^{*0}vv$

Results on Bwd-EMC Studies

Alejandro Perez, DGWG parallel session Sep. 29th 2010

Bwd-EMC studies: $B^0 \rightarrow K^0 \nu \nu$

Bwd-EMC studies: $B^0 \rightarrow K^0 \nu \nu$

Bwd-EMC studies: $B^* \rightarrow K^* \nu \nu$

Bwd-EMC studies: $B^* \rightarrow K^* \nu \nu$

Alejandro Perez, DGWG parallel session Sep. 29th 2010

Summary and outlook

- Many samples to play with out of July/September 2010 production
- Cocktails increased significantly the statistics need for the DGWG analyses
- Fwd-PID studies:
 - Gain from 2.0 to 2.5% per identified kaon (depends on momentum spectrum)
 - Signal samples with (without) a charge kaon on signal-side get an overall relative increase on efficiency of ~4.5% (~2.5%)
 - Background samples efficiency increases due to better tag-side efficiency, not significant increase on signal-side efficiency (error bars still big)
- Bwd-EMC studies:
 - All analyses give similar performances for this device
 - It seems that we can reduce the two main background samples by about ~10% with negligible reduction on signal efficiency using using Eγ(min) > 30MeV
- Next steps:
 - Analyse the rest to of the MC produced until now (~20%)

Many thanks to the production team who provided the samples needed for these studies

Alejandro Perez, DGWG parallel session Sep. 29th 2010

Reminder: SL technique

- Sample of 14 decay modes (charged + neutrals)
- Kinematics is unconstrained due to neutrinos
- Relatively high reconstruction efficiency ~2%