SuperB: DCH studies using FullSim

Dana Lindemann McGill University

DCH Session SuperB General Meeting September 27, 2010

Outline

- DCH Geometry plots
- Shield Thickness plots
- B-physics and B-reconstruction Studies

 Updated version of BAD (v3) will be available at www.hep.physics.mcgill.ca/~danaml/SuperB-Dana.pdf

Wire Layout used in Occupancies

Wires are evenly spaced 1.2 čm apart within a superlayer

Wire Layers	Radius (cm)	# of Cells	Cell Width (cm)
0-3	24.0-27.6	160	0.94-1.08
4-7	28.8 - 32.4	192	0.94-1.06
Guard	34.5	_	_
8-11	35.4-39	118	1.885-2.08
12-15	40.2-43.8	134	1.89-2.05
16-19	45.0-48.6	150	1.89-2.04
20-23	49.8-53.4	166	1.89-2.02
24-27	54.6 - 58.2	182	1.89-2.01
28-31	59.4-63.0	198	1.89
32-35	64.2-67.8	214	1.89-1.99
36-39	69.0-72.6	230	1.89-1.98
Guard	73.5	_	_
40-43	74.7-78.3	249	1.89-1.98

Occupancies vs. Energy

Curving Geometries

Shield Geometry

DCH inner barrel: (-101 to 175, 23.6)

4. A. M. M.

Dana Lindemann - McGill

B-physics

Made B decay samples using EvtGen and dec files. Ran thru FastSim, converted output into Bruno input using FastSimToFullSim package, and produced FullSim samples:

- Generic B^+B^-
- Generic B⁰ B
 ⁰
- $B^+ \to \ell^+ \nu_\ell \gamma$ where $\ell = e, \mu, B^- \to$ generic
- $B^+ \rightarrow K^+ \nu \nu, B^- \rightarrow \text{generic}$
- $B^+ \to \ell^+ \nu_\ell \gamma$ and $B^+ \to K^+ \nu \nu$, $B^- \to D^0 \pi^-$ where $D^0 \to$ charged tracks only $(K^{\pm} \pi^{\mp}, 4\pi^{\pm}$ through $K^0_s, K^{\pm}_s, K^{\pm}_s, K^{\pm}_s, K^{\pm}_1, \text{ or } \omega$ resonances)

Lepton Efficiency (%) for various geometries using $B^+ \rightarrow \ell^+ \nu_\ell \gamma$, $B^+ \rightarrow K^+ \nu \nu$ samples

Lepton	flat	WC	spherical	shortShield	flat-unsh
Electron	93.6102	93.9	93.6	93.6667	97.2778
Muon	98.7	96.1	98.65	98.75	99.1579
Kaon	89.4	88.8421	89.8421	89.8947	92.2105

Lepton Efficiencv

Generic B Track Efficiencies

Efficiency of all Tracks in Generic B

Table 2: Percentage (%) of generic B mesons with all tracks present

Sample	flat	WC	spherical	shortShield	flat-unsh
$B^+\!B^-$	51.8	49.6944	51.0263	51.1053	58.2105
$B^0 \overline{B}{}^0$	45.125	43	43.65	32.55	50.475

Table 3: Percentage (%) of generic B mesons with all $> 200 \,\text{MeV}/c$ tracks present

Sample	flat	WC	spherical	shortShield	flat-unsh
B^+B^-	83.25	80.9167	82.7368	83.2895	85.3684
$B^0\overline{B}{}^0$	82	77.475	78.425	60.375	80.65

Simple B Reco - neutrinos

Table 4: Percentage (%) of generic B mesons with $m_{\rm ES} > 5.2$, calculated using all present tracks and neutrals

Table 5: Percentage (%) of generic B mesons with $m_{\rm ES} > 5.2$, calculated using all present tracks and neutrals and removing removing events with a neutrino in the decay

Sample	flat	WC	spherical	shortShield	flat-unsh
B^+B^-	91.4903	91.7531	91.863	92.7079	95.1089
$B^0 \overline{B}{}^0$	92.8111	93.5945	93.318	94.9309	94.9309

Simple B Reco - mes

Sample	flat	WC	spherical	shortShield	flat-unsh
B^+B^-	61.558	61.1216	62.739	61.5385	71.0983
$B^0 \overline{B}{}^0$	61.7512	65.023	64.0553	71.4747	73.0415

BSemiExcl-like B Reco

- Use similar algorithm to BaBar's BSemiExcl reco. Use momentum/energy truth information at particle's originating vertex (or DCH boundary if nonprimary track)
- Tracks required to have 50 MeV p_{τ} (CM frame) and enter DCH. Particle ID • is used. Photons required to have lab energy greater than 30 MeV and exit DCH
- Reconstruct Ks⁰ and pi⁰ using requirements similar to BaBar but with tighter invarient mass requirements.
- D seeds must be 1 MeV away from PDG mass:
 - $D^{*0} \rightarrow D^0 \pi^0$, $D^0 \chi$
 - $D^{*\pm} \rightarrow D^0 \pi^{\pm}$
 - $D^0 \to K^{\pm} \pi^{\mp}, \ K^{\pm} \pi^{\mp} \pi^0, \ K^{\pm} \pi^{\mp} \pi^+ \pi^-, \ K^0_S \pi^+ \pi^-$
 - $D^{\pm} \rightarrow K_{s}^{0}\pi^{\pm}, \ K_{s}^{0}\pi^{\pm}\pi^{0}, \ K_{s}^{0}\pi^{\pm}\pi^{+}\pi^{-}, \ K^{\pm}\pi^{+}\pi^{-}, \ K^{\pm}\pi^{+}\pi^{-}\pi^{0}$
- B->DX must have a charged X, no more than 5 particles, ≤ 2 being K± or • Ks⁰, \leq 2 being pi⁰. Require |Delta E| < .2 GeV and mes > 5.2
- BestB currently chosen by the X with the lowest number of tracks/photons used, with ties broken using Delta E. Dana Lindemann - McGill

Sept 27, 2010

BsemiExcl-like B Reco

Table 15: Percentage (%) of events with a reconstructed B meson

Sample	flat	WC	spherical	shortShield	flat-unsh	BABAR R22
$B^+\!B^-$	8.1	7.61111	7.68421	7.52632	8.73684	4.64
$B^0 \overline{B}{}^0$	7.25	7.1	6.75	5.15	7.85	4.02
$B^+ ightarrow e^+ u_e \gamma$	1	0.85	0.65	0.611111	0.833333	0.381
$B^+ ightarrow \mu^+ u_\mu \gamma$	0.7	0.65	0.75	0.5	0.842105	0.378
$B^+ \to K^+ \nu \nu$	1.05	1.15789	0.894737	1.10526	1.68421	-

Table 16: Percentage (%) of events with a reco B with $m_{\rm ES} > 5.27$

Sample	flat	WC	spherical	shortShield	flat-unsh	BABAR R22
$B^+\!B^-$	1.55	2.05556	1.94737	2	2.15789	1.10
$B^0\overline{B}{}^0$	1.3	1.65	1.55	1.35	2.15	0.852
$B^+ ightarrow e^+ u_e \gamma$	0.983051	0.85	0.6	0.555556	0.833333	0.293
$B^+ ightarrow \mu^+ u_\mu \gamma$	0.7	0.65	0.7	0.5	0.842105	0.286
$B^+ ightarrow K^+ u u$	0.75	0.947368	0.736842	0.947368	1.36842	_

Table 13: Percentage (%) of events with a reco B with $m_{\rm ES} > 5.27$ with no Bsig particles

Sample	flat	WC	spherical	shortShield	flat-unsh
$B^+\!B^-$	1	1	1	1.05263	1.21053
$B^0 \overline{B}{}^0$	0.6	1.05	1	0.65	1.25
$B^+ ightarrow e^+ u_e \gamma$	0.983051	0.85	0.6	0.555556	0.833333
$B^+ ightarrow \mu^+ u_\mu \gamma$	0.7	0.65	0.7	0.5	0.842105
$B^+ \rightarrow K^+ \nu \nu$	0.75	0.947368	0.736842	0.947368	1.36842

Conclusion

- The convex geometries show little difference in occupancy, as does the 2 cm shield. The 1 cm shield has higher occupancies
- The track acceptance shows little difference between geometries, although flat_unsh is highest and WC is lowest.
- More work to be done with B reconstruction algorithm? Perhaps...

Backup Slides

1.4

Analysis Procedure

- Bhwide generator in FastSim (No Bhwide with Bruno)
- Transfer events to FullSim by converting StdHepAsciiDump output to guinea generator input
- Create tuples with e+eat 2-178, 5-175, 15-165 degrees (CM frame)

Degrees	Cross-Section (nb)
2-178	7171.77
5-175	876.348
15-165	81.6761

• Combine with tuples created using Bruno's Bbbrem generator. Weight = 4.644 ns^{-1} Sept 27, 2010 Dana Lindemann - McGill

Combining Samples

Tracking Algorithm

- Bruno only provides deposited energy (hit) information within a chamber that's void of wires. All wires are assumed to be axial and uniformly spaced.
- Using the TrackID of time-ordered hits, I define a track and extrapolate the number of wires the track would cross.
- Use Truth Info to determine where track enters/exits DCH:
 - Tracks that enter/exit DCH are approximated with 2 straight lines: from DCH entrance location to hit with max radius, then to DCH exit location
 - Tracks starting within DCH are drawn with one straight line: from first to final hit. (98.9% of tracks, 99.99% have E<15MeV, 98% E<1.5MeV) Dana Lindemann - McGill Sept 27, 2010

Occupancy Method (old plots)

