XIV SuperB General Meeting

Update on pixel bus and pixel module interfaces

Mauro Citterio

On behalf of INFN Milano and Università degli Studi di Milano

Index

- Bus design
 - Understanding "prototype bus" construction
 - Discrepancies from expected performances
 - Analysis undertaken
 - Design review of the "3-chip BUS" with CERN PCB shop and suggestions
 - Status of BUS redesign
 - Production issues
- HDI and transition card
 - Prototype HDI design using an FPGA
 - Next steps

Understanding "prototype bus" construction

- Three main concerns:
- Bus designed for 50 Ohm Impedance
- Measured impedance is > 60 Ohm
- Impedance changes between identical lines
- Measured NEXT crosstalk (~ 10%) much higher than simulated (3%)

mpedance (Ohm)

M. Citterio – INFN Milano

Sept. 2010

Understanding "prototype bus" construction

• Stack-up by design

Number of layers: 8 Total thickness = 156 um

NN	Layer Name	Туре	Usage	Thickness um	Er
1	TOP-LAYER	Metal	Signal	13	<auto></auto>
2	Polyimide	Dielectric	Substrate	15	3.5
З	Glue	Dielectric	Substrate	5	4.5
4	INNER-LAYER	Metal	Signal	13	<auto></auto>
5	Polyimide	Dielectric	Substrate	40	3.5
6	Glue	Dielectric	Substrate	5	4.5
7	GROUND-PLANE	Metal	Plane	50	<auto></auto>
8	Polyimide	Dielectric	Solder Mask	15	3.5

Sept. 2010

Analysis of the stack-up

Thanks to F. Bosi and INFN Pisa

Sept. 2010

What we understood so far

• Impedance

- Impedance is obtained by increasing glue thickness and NOT by thicker kapton layers
 - *E*r is different for glue and kapton, dielectric thickness is more $\rightarrow Z$ moves toward the right value, not exact value yet !!
 - Layer thickness must be carefully measured during stack-up
 - » It will be good practice to measure thickness at each step in production
 - » The kapton layer is always the same (nominal thickness is 12.5 um)
- Aluminum signal lines are slightly thicker than expected
- Trace widht is ~ 75 um, but with some "undercut" due to etching. Trace width could be not uniform \rightarrow it will explain impedance variation from line to line.
- Power planes are "polished" before depositing the glue \rightarrow the effective thickness must be considered for power drop calculation. Thicker planes (50 um or more) can be used but not available at all time.
- Crosstalk
 - Not yet understood the extra crosstalk \rightarrow solder mask properly considered ?
 - We need more cut-out of the bus to evaluate the top metal layer
 - Thanks to Pisa help we will have the info soon

Bus for a 3-chip assembly

Layout of a BUS for up to 3 modules

- using front-end IC "FE 32x128" (expected in the summer)
- Bus widht: 8.7 mm
- Signal trace layer widht: 75 µm
- Bus length ~ 6.5 cm

Issues discussed with CERN:

- "Area opening" of $300x500 \ \mu m$ possible on power planes to allow decoupling (cap mounting). Openings will be gold-nickel plated
- Bonding pads will be aluminum. Avoid bimetallic junctions to increase reliability
- Use mesh instead of full layer for power and ground planes \rightarrow better for X₀

Bus for a 3-chip assembly

Other important design guidelines:

- Each chip will have its own signal data layer
 - 3 chips \rightarrow 3 layers
 - Same impedance on each data layer (~ 50 Ω, 75 Ω under study)
- Two signal layers are striplines (to decrase crosstalk) the other lines are microstrip (to study two options)
- To decrease layout complexity no vias will be used
- 3 power planes + 3 ground planes
 - 2 digital power/ground kept separated to avoid possible interferences
- Data bus layout have been designed to reduce inter-bus capacitive values
- Upgrade to 6 chips will scale accordingly
 - Same number of layers

Signal layers for the 3-chip BUS

M. Citterio – INFN Milano

Sept. 2010

Stack-up modification (50 Ω)

				(30 um
				[r	——— 15 um
100		1	1	//r	21 um
				W	——— 12 um
SIGNALS-I		1		Ør	21 um
Giue				∥ <i>ŗ</i> −−−−−	25 um
Clue			///	(/	——————————————————————————————————————
				V/	12 um
Glug				[——————————————————————————————————————
Kapton					——— 25 um
Glue					50.um
					50 um
Addite					——— 12 um
Glue					50 um
Kapton —					
Glue				-	50 um
SIGNALS-2					12.um
Glue					50 um
Kapton ———					25 um
Glue					5 um
Giuo					12 um
DVDD_CORE				<u>//</u>	——————————————————————————————————————
Glue				<u></u>	25 um
Kapton —	/			<u> </u>	50 um
	/			<u> </u>	——— 12 um
DGND_CORE					——— 50 um
Kenton					15 um
Glue					50
SIGNALS-3					——— 12 um
Glue					50 um
Kenton					50 am
Карюн					——— 25 um
Glue					——— 5 um
					12 um
				Ø/	5 um
Kanton				8	25 um
Glue	/			1	5 um
DGND MAT					12 um
Glue	{			ncin	
Kapton			- 1/C		
		IQV			
			_		

Sept. 2010

New situation

- **Overall thickness increases**
 - Due to striplines \rightarrow overall thickness ~ 800 um
 - Minimal glue thickness (5 um) used only between planes
 - Mesh plane structure (70/30 full/empty) compensate material on average
- Avoiding vias
 - Each layer is prepared and tested independently
 - Stack-up assembled at the last moment \rightarrow no vacuum deposition
 - No minimum quantity
 - Consider to submit two design versions for comparison
- Redesign status
 - Simulation of new layout will be completed by mid October
 - Bonding layout should be reviewed
 - Bonding pads are not on the uppermost layers anymore
- **Production schedule**
 - Design/s submitted October \rightarrow BUS back by end of March '11

3D Model of the assembly

HDI, transition card development

- Transfer data from layer0 front-end electronics to DAQ
 - to collect data and program FSSR2 (baseline) or MAPS (upgrade)
 - to store data for 20 µs by means of buffers (hypothesis)
 - to increase robustness using ECC codes and radiation hardening by design ASICs
 - to transfer data at high frequencies (up to 5 Gbps)
 - to re-use similar approach for others layers (with less contraints)

Present Understanding

- At high occupancy (layer 0), FSSR2s are not able to collect data properly
- A triggered solution needs to be implemented in the FSSR2 chips
- For this reason our test/development strategy has moved to a data push-out solution

Main strategy

 Usage of a rad-hard IC containing data organizer, buffers, and serializer

HDI size \approx 1.0 TH x 14.8 W x 70 L mm Copper tail size \approx 500 L mm \rightarrow (\approx 16 lines) **PIX/MAPS:** Kapton/aluminum bus size \approx 0.3 TH x 20 W x 45 L mm \rightarrow (\approx 100 lines)

HDI prototype

- We have developed a first prototype using a Virtex 5 FPGA
 - Prototype contains:
 - Differential receivers
 - **De-serializer**
 - Data organizer

Sept. 2010

Test of the FPGA prototype

- Extensive tests demonstrate that the Virtex 5 FPGA prototype works as expected
 - A C++ program generates data as an FSSR2 will do and data stream is loaded in a Logic State Analyzer (LSA)
 - Such data are then emulated by means of the pattern generator of the LSA
 - The prototype can accept 1,2,6 differential input line
 - The prototype is able to lock on the sync word
 - Data are handled (deserialized, buffered) by the FPGA before sending them back to the LSA for comparison

Next Steps

- Study data transmission using the prototype BUS
 - Data sent from the LSA pattern generator through to the FPGA via the BUS lines (differentiall and not)
 - Signal integrity measurements and comparison with simulation
 - Multiple line inejction to study crosstalk and jitter
- Rad hard Serializer (LOC) 16:1, 5 GBps
 - ITER export limitation solved
 - Dallas chip expected in the coming weeks
 - LOC will be used instead of FPGA rocketIO

