

Friday, October 1, 2010

Friday, October 1, 2010

Riccardo Cenci

Occupancy vs max step length

Peidon Shield Ceometries 10 10 10 10 10 10 10 10 10 10			same for the 3 step limit setting ttings, different number of calls for n root file but hits are still different. Infiguration is not simulating well low nultiple scattering in low density n) y, consistent for Einc > 5MeV			
	Old method	New Method	New method Einc > 1 MeV	N Ei	ew methenc > 5 Me	od eV
Occ (no step limit)	2.9%	4.7%	1.74%		0.50%	
Occ (max step 5cm)	2.9%	3.3%	1.07%		0.43%	
Occ (max step 1mm)	1.35%	1.36%	0.80%		0.46%	

Riccardo Cenci

SuperB General Meeting, Sep 27, 2010

Detector hall electronics model

Friday, October 1, 2010

Next Production

Next Production

Time line

- Model of the beam line (Perez) and of the electronics racks by end of october
- I0⁶ events radiative Bhabha (request driven by IFR people)
- Touschek backgrounds 2 x 10⁵ primaries
- Production should start just after halloween
- Production should be completed by end november

SuperB - SuperKEKB

	Cross section	Evt/bunch xing	Rate @ 10 ³⁶ Hz/cm ²	Super KEKB
"Radiative" Bhabha e ⁺ e ⁻ to e ⁺ e ⁻ γ	~340 mbarn (Εγ/E _{beam} > 1%)	~850	0.3THz	Work in progress
e ⁺ e ⁻ pair production	~7.3 mbarn	~18	7GHz	Ok
e ⁺ e ⁻ pair (seen by L0 @ 1.5 cm)	~0.3 mbarn	~0.8	0.3GHz	1/10 ??
Elastic Bhabha	O(10 ⁻⁴) mbarn (Det. acceptance)	~250/Million	100KHz	
Ύ(4S)	O(10 ⁻⁶) mbarn	~2.5/Million	I KHz	
	Loss rate	Loss/bunch pass	Rate	
Touschek (LER)	4.1kHz / bunch (+/- 2 m from IP)	~3/100	~5 MHz	Good agreement in total loss rate. SuperB have a better scraper system.

SuperB - SuperKEKB

- We agreed on a set of cross checks to do in the future
 - Generators level distributions
 - Diag 36 vs BDK
 - BBBrem
 - STAR (Touschek)
 - Beam line transport
 - Interactions with the beam line material

Future plans

- IR design is almost shaped up (see Mike talk)
- Time to dress the beam line.
 Sub system should begin to allocate space for their needs.
- Mechanical engineers needed to make real progresses (efficiently) at this stage

Touschek datasimulation comparison

