

SiPM timing measurements at LAL

XII SuperB Workshop Frascati, September 27-31 2010

Véronique Puill

C. Bazin, D. Breton, L. Burmistrov, V. Chaumat, N. Dinu, J. Maalmi, A. Stocchi, Jean-François Vagnucci

2010 Sept 27-31 V. Puill, XIIth SuperB Project Meeting, Frascati,

SiPMs (1 mm²) measured at LAL

I.

	Reference	Pixel nb	Pixel size (µm)	Fill factor (%)
F.B.K B	B11 B13	400 400	50 x 50 50 x 50	
Hamamatsu MPPC	S10362-11-25	1600	25 x 25	31
	S10362-11-50	400	50 x 50	61.6
	S10362-11-100	100	100 x 100	78.5
	10-50S-BK 4S	400	50 x 50	38
	10-100S-FS	100	100 x 100	78
SensL SPM		T		r
	SPM-20	848	29 x 32	43
	SPM-50	216	59x 62	68

Determination of the operational voltage range of the SiPMs

Evolution of Ireverse with the bias voltage

Measurement of the gain and V_{BD} (breakdown voltage)

Breakdown voltage increases with the temperature

 $dV_{BD}/dT \sim 59 \text{ mV/}^{\circ}\text{C}$ for the MPPC 10-100 S-FS

Correction of the bias voltage if the temperature changes inside the test bench to maintain a constant gain

Measurement of the Dark Count Rate

Dark noise : thermally produced avalanches. Look the same as pulses from photon

DCR MPPC 10-100 S-FS-n°11

ΔV (V)

Optical test bench for the TTS measurements

Contribution to the timing resolution of the detection chain

Pilas pulsed laser diode

🐥 Pilas driver : jitter ≈ 3 ps

- Timing resolution of the LECROY scope = 1 ps
- Timing resolution of the Wavecatcher = 8 ps
- Timing resolution of the SiPM ?

SiPMs signals (voltage amplifier output)

HAMAMATSU MPPC S10362-11

HAMAMATSU MPPC 50 µm (2009)

FBK SiPM (ref B) (2009)

Sept 27-31 2010 V. Puill, XIIth SuperB Project Meeting, Frascati,

Measurement principle of the SiPM timing resolution

Measurement of the time between the laser and the SiPM signals \rightarrow distribution of the Δt

Δt and amplitude distribution of the SiPM signals

MPPC-1-100-n3-70.0V

MPPC-1-100-n3-69.3V

Cross-talk definition

Noise : pulses triggered by non-photo-generated carriers

An avalanche in one pixel may produce an optical photon wich can trigger another avalanche in a neighboring pixel without delay

2010

Sept 27-31

V. Puill, XIIth SuperB Project Meeting, Frascati,

Contribution of the cross-talk to the TTS histo tail

14

Data from Wavecatcher

Single Photo Electron Timing Resolution

Single Photo Electron Timing Resolution

FBK and Sensl devices

T = 20 °C, λ = 467 nm

Conclusion, further work

Conclusion

- 65 ps < SPTR SiPM 1 mm²< 85 ps at 20 °C, 467 nm
- SPTR measurements with the Wavecatcher and the LECROY scope in agreement (15 %)
- Tail of the TTS histo \rightarrow to be undersood

Further work

★ Measurement of the SiPM timing resolution of 9 mm² SiPM (HAMAMATSU, FBK, Sensl)

 \star Measurement of the SiPM timing resolution in function of the :

- ✤ wavelength (403 nm and 633 nm)
- simultaneous incident number of photons
- ✤ temperature

★ Study of Burle (64 anodes) and HAMAMATSU (SL10 4 and 16 anodes) MCP-PMTs

Additional slides

T = 20°C	type détecteur	Vbd (V)	V1 (V)	V2 (V)	V3 (V)
HPK	MPPC 10-50S-BK 4S n°10	69,1	70,1	70,9	71,5
DCR (Hz)	MPPC 10-50S-BK 4S n°10		2,91E+05	6,45E+05	1,18E+06
Gain th	MPPC 10-50S-BK 4S n°10		4,17E+05	7,56E+05	1,00E+06
HPK	MPPC 10-100S-FS n°11	69,12	69,5	70	70,5
DCR (Hz)	MPPC 10-100S-FS n°11		2,00E+05	4,00E+05	6,00E+05
Gain th	MPPC 10-100S-FS n°11		7,85E+05	1,85E+06	2,88E+06
HPK	S10362-11-025U-n°11	68,2	69,2	70,2	71,2
DCR (Hz)	S10362-11-025U-n°11		4,30E+04	1,08E+05	1,90E+05
Gain th	S10362-11-025U-n°11		1,28E+05	2,50E+05	3,74E+05
HPK	S10362-11-050U-n°3	68,35	69,2	69,8	70,4
DCR (Hz)	S10362-11-050U-n°3		1,53E+05	2,94E+05	4,81E+05
Gain th	S10362-11-050U-n°3		5,41E+05	9,24E+05	1,31E+06
HPK	S10362-11-100U-n°3	68,71	69,5	70	
DCR (Hz)	S10362-11-100U-n°3		1,76E+05	5,28E+05	
Gain th	S10362-11-100U-n°3		2,10E+06	3,36E+06	
FBK	FBK IRST B13	29,4	29,9	30,5	31,1
DCR (Hz)	FBK IRST B13			3,45E+06	5,87E+06
Gain th	FBK IRST B13		2,36E+05	5,19E+05	8,03E+05
				20.4	
FBK	FBK IRST BII	28,8	30	30,4	
DCR (Hz)	FBK IRST BII		2,95E+06	4,04E+06	
Gain th	FBK IRST BIT		5,27E+05	7,18E+05	
OFNOI	Sanal 200	20.00	20	20 5	01
	Sensi 20µ	29,02	30 7 005±05	30,3 7 125±05	31 761 <u>₽</u> ±05
$C_{\text{oin th}}$	Senal 20µ		1,09E+05	7,13E+05	2 12E+05
Gain th	Bense 20µ		4,33⊵+05	0,300+05	0,135+03

MPPC 50 μ m « wide trace »

	Quenching resist	ance = $130K\Omega$ by for Ω	brward IV curve
Sample name	STD	Small pixel	Wide trace
Sample name Fill factor	STD 62 %	Small pixel 38 %	Wide trace 38 %
Sample name Fill factor ΔV(Vop−Vbr) #1	62 %	38 % 2.02 V	Wide trace 38 % 2.01 V
Sample name Fill factor ∆V(Vop−Vbr) #1 Dark count at Vop	STD 62 % 1.31 V 535 Kcps	Small pixel 38 % 2.02 V 484 Kcps	Wide trace 38 % 2.01 V 502 Kcps
Sample name Fill factor ∆V(Vop−Vbr) #1 Dark count at Vop Pixel capacitance (Cd) #2	STD 62 % 1.31 V 535 Kcps 90 fF	Small pixel 38 % 2.02 V 484 Kcps 59 fF	Wide trace 38 % 2.01 V 502 Kcps 60 fF
Sample name Fill factor ∆V(Vop−Vbr) #1 Dark count at Vop Pixel capacitance (Cd) #2 Stray capacitance / pixel #3	STD 62 % 1.31 V 535 Kcps 90 fF 2.5 fF	Small pixel 38 % 2.02 V 484 Kcps 59 fF 11 fF	Wide trace 38 % 2.01 V 502 Kcps 60 fF 23 fF

Quenching resistance = $115K\Omega$ by forward IV curve

Sample name	STD	Small pixel	Wide trace
Fill factor	78 %	72 %	72 %
∆V(Vop—Vbr) #1	1.02 V	1.18 V	1.18 V
Dark count at Vop	1075 Kcps	1089 Kcps	1243 Kcps
Pixel capacitance (Cd) #2	373 fF	323 fF	325 fF
Stray capacitance / pixel #3	17 fF	37 fF	61 fF
PDE at Vop , 440nm	79.7 %	76.2 %	77.6 %

#1 : Vop is at 2.4E06 #2 : by GAIN vs VR curve #3 : Ctotal / 100 - Cd at 25°C

MPPC 100 μm « wide trace »