

Preliminary Vibration Budget For SuperB

XIV Super-B General Meeting Frascati, Italy 29 Sept 2010

Kirk Bertsche

- Allowed beam displacement at IP
 - from IX SuperB General Meeting (June 2009, Perugia)
- Expected ground motion
 - from XI SuperB General Meeting (Dec 2009, Frascati)
- Effect of cantilevered cryostat
 - new
- Effects of quad motion on beam
 - from IX SuperB General Meeting (June 2009, Perugia)
- Requirements on beam feedback
 - partly from VII SuperB General Meeting (Feb 2009, Paris)
- Overall beam displacement
 - new

- Y position has very tight tolerance:
 - 8 nm relative beam displacement at IP reduces luminosity by 1%
- Other dimensions much looser:
 - Y angle: 200 urad relative displacement at IP reduces luminosity by 1%
 - X position: 2 um relative displacement at IP reduces luminosity by 1%

From Bertsche, IX SuperB General Meeting (June 2009, Perugia)

Ground Motion at LNF

PSD of ground motion in the basement of the new guest house

Vibration Transfer Function with Depth

Idealizations For Error Budget

SuperB

Quadrupole to IP Transfer Function

Quadrupole motion in Y	Vibration transfer fn
QD0 (total)	~ 0.7
QF1	~ -0.15
Arc QDs (RMS sum)	< 0.05

- Collisions very sensitive to QD0 vertical motion (cryostat)
 - ~ 5x less sensitive to QF1 motion (and opposite sign)
 - Y angle and X position: >100x less sensitive than Y position
 - HER and LER very similar; relative motion will be 1.4x larger
- Values assume closed orbit, with tune near $\frac{1}{2}$ integer
- We will consider only QD0 (RMS sum of everything should be less)
 - 8 nm motion of both QD0s gives 8nm relative beam displacement, or 1% lumi reduction

From Bertsche, IX SuperB General Meeting (June 2009, Perugia)

- Cantilevered cryostat can amplify ground vibrations, even if a rigid body
 - Increases with frequency due to y-angle of ground motion
 - Decreases when wavelength shrinks to size of base

- Assumes:
 - Ground vibration wave velocity 100-200m/s
 - Cantilever ~ 2m
 - Base 1-2m

- Fast dither system
 - Presented by Bertsche at VIII SuperB General Meeting (Feb 2009, Orsay), PAC09 (May 2009, Vancouver)
- Fast IP feedback system
 - Presented by Drago at VIII SuperB General Meeting (Feb 2009, Orsay)
- Need 100 Hz bandwidth, ~30x vibration reduction at LF

Resultant Beam Motion

Resultant Beam Motion

Worst case: 1% loss of luminosity

- Cantilevered cryostat should be rigid
 - Damp resonances and push > 10 Hz
 - Support on both sides of detector door
- Beam feedback should extend to 100Hz, provide ~30x vibration reduction at LF
- LNF site
 - Active mechanical feedback not needed (unless cryostat or beam feedback requirements not met)
- Surface site
 - Limit cultural noise (roads, trains)
 - May need active mechanical feedback?

Ground Motion Data

Vibration Variation with Depth

