

Super-B: RF and HOMs absorbers.

Sasha Novokhatskí SLAC National Accelerator Laboratory

> XIV Super B General Meeting September 27– October 1, 2010 INFN-LNF, Frascati, Italy

Super-B parameters. March 3, 2010

ন

Sasha Novokhatski "RF and HOMs absorbers

(Bold: computed values)		Base Line		Low Emittance		High Current		Tau/Charm (prelim.)	
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.61
Circumference	m	1258.4		1258.4		1258.4		1258.4	
Bunch length (zero current)	mm	4.69	4.29	4.73	4.34	4.03	3.65	4.75	4.36
Bunch length (full current)	mm	5	5	5	5	4.4	4.4	5	5
Beam current	mA	1892	2447	1460	1888	3094	4000	1365	1766
N. Buckets distance		2	2	2	2	1	1	1	1
lon gap	%	2	2	2	2	2	2	2	2
RF frequency	Hz	4.76E+08	4.76E+08	4.76E+08	4.76E+08	4.76E+08	4.76E+08	4.76E+08	4.76E+08
Revolution frequency	Hz	2.38E+05		2.38E+05		2.38E+05		2.38E+05	
Harmonic number	#	1998		1998		1998		1998	
Number of bunches	#	978		978		1956		1956	
N. Particle/bunch	#	5.08E+10	6.56E+10	3.92E+10	5.06E+10	4.15E+10	5.36E+10	1.83E+10	2.37E+10
Bunch current	mA	1.935	2.502	1.493	1.930	1.582	2.045	0.698	0.903
Energy Loss/turn	MeV	2.11	0.865	2.11	0.865	2.11	0.865	0.4	0.166
Momentum compaction		4.36E-04	4.05E-04	4.36E-04	4.05E-04	4.36E-04	4.05E-04	4.36E-04	4.05E-04
Energy spread (zero current)	dE/E	6.31E-04	6.68E-04	6.31E-04	6.68E-04	6.31E-04	6.68E-04	6.31E-04	6.68E-04
Energy spread (full current)	dE/E	6.43E-04	7.34E-04	6.43E-04	7.34E-04	6.43E-04	7.34E-04	6.94E-04	7.34E-04
CM energy spread	dE/E	5.00E-04		5.00E-04		5.00E-04		5.26E-04	
Energy acceptance		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Synchrotron frequency	kHz	3.01	2.8	2.97	2.77	3.54	3.26	2.96	2.77
Synchrotron tune		0.0126	0.0118	0.0125	0.0116	0.0148	0.0137	0.0124	0.0116
SR power loss	MW	3.99	2.12	3.08	1.63	6.53	3.46	0.55	0.29
RF Wall Plug Power (SR only)	MW	12.2	2	9.43	3	19.98	В	1.6	8
Total RF Wall Plug Power	MW	17.08		12.72		30.48		3.11	
Number of cavities		12	8	12	8	20	12	6	4
Number of Klystrons		6	4	6	4	10	6	3	2
Total Number of klystrons		10		10		16		5	
RF Voltage	MV	7.01	5.25	6.88	5.13	9.3	7.2	2.54	1.94
R _s	MΩ								
0.									
ß									

XIV SuperB General Meeting @ INFN-LNF

from 27 September 2010 to 01 October 2010 (Europe/Rome)

 \mathbb{N}

Ð

 ∇

F

	2	
	i i	
	9	
	7	
	0	
	.2	
	5	
	0	
	S	
	Y	
	5	
	Õ	
	2	
	H	
	~ 2	
	5	
	2	
	5	
	a	
	Lr.	
	5	
	R	
	3	
	• ~ ~ ~	
	é	
	S	
	t.	
	U	
	Ľ.	
	Q	
	õ	
	ã	
	õ	
	5	
	5	
	4	
	ų	
	S	
	G	
	5	
10000		

HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER+
Total	Zero I		Max	Number			Total	Total	Total	forward	reflected	LER
RF	Bunch	Bunch	voltage	of	S.R.	HOMs	cavity	reflected	forward	to one	from	Total
voltage	length	spacing	per cavity	cavities	power	power	loss	power	power	cavity	one	forward
MV	mm	ns	MV	klystrons	MW	MW	MW	MW	MW	MW	MW	MW
	4.69											
7.01	4.78	4.20	0.58	12.00	3.99	0.27	0.54	0.36	5.16	0.43	0.03	8.19
	5.00			6.00								
												HER+
LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER
Total	Zero I		Max	Number			Total	Total	Total	forward	reflected	Plug
RF	Bunch	Bunch	voltage	of	S.R.	HOMs	cavity	reflected	forward	to one	from	Power
voltage	length	spacing	per cavity	cavities	power	power	loss	power	power	cavity	one	eff.~50%
MV	mm	nsec	MV	klystrons	MW	MW	MW	MW	MW	MW	MW	MW
	4.29											
5.25	4.71	4.20	0.66	8.00	2.12	0.41	0.45	0.05	3.03	0.38	0.01	16.38
	5.00			4.00								

3 09/29/2010

XIV SuperB General Meeting @ INFN-LNF

rom 27 September 2010 to

Power absorption

All power in the rings (5.2 MW + 3 MW) should be absorbed by the water cooling system directly without causing any unpleasant beam problem like emittance growth or instability due to high intensity of the generated wake fields, vacuum pressure rise or electron multipactoring.

Same amount of power (8.2 MW) will be dissipated in the klystron beam collectors.

Sasha Novokhatski "RF and HOMs absorbers

XIV SuperB General Meeting @ INFN-LNF from 27 September 2010 to 01 October 2010 (Europe/Rome)

Transverse wake fields are generated in the asymmetrical parts of the beam pipe.

Transverse wake fields can penetrate through the small hole in the vacuum chamber or longitudinal slots of shielded bellows, vacuum valves and RF shields.

□Transverse wake fields may propagate long distances.

from 27 September 2010 to 01 October 2010 (Europe/Rome)

XIV SuperB General Meeting @ INFN-LNF

 \frown

A beam scraper

F

 \mathbb{N}

XIV SuperB General Meeting @ INFN-LNF

from 27 September 2010 to 01 October 2010 (Europe/Rom

Laboratori Nazionali di Frascati

 \mathbb{N}

SLAC has developed high efficiency HOMs absorbers for different cross-sections

 \mathbb{N}

XIV SuperB General Meeting @ INFN-LNF

 \square

State of art technology

10 **09/29/2010**

 \mathbb{N}

XIV SuperB General Meeting @ INFN-LNF

- Flange dimensions:
 - 3.5" (diameter) x 4" (length)
- 40% efficiency
- Installed 5

N

XIV SuperB General Meeting @ INFN-LNF

 \square

Installed absorbers after each LER collimator

চ)

 \mathbb{N}

XIV SuperB General Meeting @ INFN-LNF

Sasha Novokhatski "RF and HOMs absorbers

 Flange dimensions: 3.543" x 1.969" x 4" (length) J-style RF seals

N

Sasha Novokhatski "RF and HOMs absorbers

- Aperture dimensions:
 4.920" x 1.969" x 4" (length)
 Ω -style RF seals
 - Produced:6, installed 5

N

XIV SuperB General Meeting @ INFN-LNF

Other PEP-II absorbers

Sasha Novokhatski "RF and HOMs absorbers

 \mathbb{N}

XIV SuperB General Meeting @ INFN-LNF

Q4/Q5 Bellows with Absorber

Sasha Novokhatski "RF and HOMs absorbers 0 Q4 side, 10" Mechanically flange decouples Q4 & Q5 vacuum Inconel Spring chambers Finger Absorbing tiles above and below beam orbit GlidCop Cooling – not shown Stub GlidCop RF Welded Bellows **Shield Finger** Q5 side 12" flange

XIV SuperB General Meeting @ INFN-LNF

from 27 September 2010 to 01 October 2010 (Europe/Rome)

oratori Nazionali di Frascat

 \mathbb{N}

Q1/Q2 HOM Bellows

Sasha Novokhatski "RF and HOMs absorbers

- Limited space available
- Anticipated high power loads
- Design compromises travel during installation to accommodate new HOM absorption arrangement
- 61 mm maximum tile/slot length
- Absorbing tiles are open to the convolutions
 - No additional tile set needed in bellows cavity
- HER Arc Bellows features
 - Spring, Stub, RF shield

 \mathbb{N}

XIV SuperB General Meeting @ INFN-LNF

- 2) After energy collimator (1+1)
- 3) After injector kickers (1+1)
- 4) After abort kickers (1+1)
- 5) After electron cloud cleaning electrodes.
- 6) In any place with a complicated vacuum chamber transition

XIV SuperB General Meeting @ INFN-LNF

ptember 2010 to 01 October 2010 (Europe/Rom

SuperB

HER LER

200

250