Low Level RF for superB

Olivier BOURRION

LPSC Grenoble

September 28, 2010

Table of Contents

¹ [LLRF motivation reminder](#page-2-0)

- ² [Feedback techniques](#page-6-0)
	- [Direct RF feedback](#page-7-0)
	- [One turn delay feedback](#page-10-0)

³ [Loop implementation](#page-13-0)

- **•** [Loop details](#page-15-0)
- **[Hardware plateform](#page-20-0)**
- [A few technical details](#page-22-0)

Table of Contents

¹ [LLRF motivation reminder](#page-2-0)

- **[Feedback techniques](#page-6-0)**
	- [Direct RF feedback](#page-7-0)
	- [One turn delay feedback](#page-10-0)

[Loop implementation](#page-13-0)

- **•** [Loop details](#page-15-0)
- **[Hardware plateform](#page-20-0)**
- [A few technical details](#page-22-0)

[Conclusions and questions](#page-27-0)

Cavity model

- I_G Generator current
- I_{B} Beam current
- I_T Cavity current $(\overrightarrow{I_T} = \overrightarrow{I_G} + \overrightarrow{I_B})$
- I_0 Loss current in shunt resistance
- V_C Cavity voltage
- Q_1 Loaded quality factor
- High intensity beam \rightarrow cavity voltage perturbated by I_B
- \bullet Objective: maintain constant V_C
	- \bullet I_G contribution should compensate I_B
	- Modulation of $I_B \rightarrow$ modulation I_G

Cavity tuning / phasor diagram

- ϕ_{L} Loading angle
- ϕ _Z Cavity tuning angle
- $\phi_{\rm B}$ Stable phase angle (above transition I_B points upward)
- From diagram study: $\tan \phi_Z = \tan \phi_0 + \frac{l_B}{l_0} (\tan \phi_0 \sin \phi_B + \cos \phi_B)$
- Maintaining generator current in phase with cavity voltage \rightarrow $\tan \phi_Z = \frac{l_B}{l_0} \cos \phi_B$
- Cavity tuning angle increase with current
- Frequency shift due to cavity tuning $\delta f = -f_{RF} \frac{Z_{sh}}{Q}$ Q I $\frac{1}{V_{RF}}N_c$
	- \bullet In LER: 233 kHz
	- \bullet In HER: 252 kHz
- Values close to $\omega_{rev} \omega_s$ (227 kHz- 2.65 kHz)

Instabilities and cavity impedance

• Instabilities growth rates proportionnal to the cavities impedance:

$$
\tau_l^{-1} \approx \frac{el_B F_{rf} \alpha}{2EQ_s} [Re \ Z_c(\omega_{rf} + l\omega_{rev} + \omega_s) - Re \ Z_c(\omega_{rf} - l\omega_{rev} - \omega_s)]
$$

Applying this to the detunned cavity impedance yields:

- mode -1 growth rate is 33 ms⁻¹ (baseline LER)
	- Comparable to synchrotron frequency $(1/\tau_{-1})/\omega_s \sim 0.5$
	- \bullet Exceed the radiation damping rate (LER damping time =20.3 ms) $(1/\tau_{-1})/(1/\tau_d) \sim 670$ Gл hateminus at de Coumol

[Direct RF feedback](#page-7-0) [One turn delay feedback](#page-10-0)

Table of Contents

LLRF motivation reminder

- ² [Feedback techniques](#page-6-0)
	- [Direct RF feedback](#page-7-0)
	- [One turn delay feedback](#page-10-0)

[Loop implementation](#page-13-0)

- **•** [Loop details](#page-15-0)
- **[Hardware plateform](#page-20-0)**
- [A few technical details](#page-22-0)

[Conclusions and questions](#page-27-0)

[Direct RF feedback](#page-7-0) [One turn delay feedback](#page-10-0)

Direct RF feedback (1/2)

 \bullet In theory the highest gain GA is desired:

- Maintain loop stability \rightarrow Phase Margin is impacted by loop delay
- Canonical value of PM $=\pi/4$ yields

$$
GAR \leq \frac{Q}{\omega_r} \frac{\frac{\pi}{4T} + 2\omega_r}{1 + \omega_r \frac{4T}{\pi}} = G_{\text{max}}AR
$$

Impedance reduction limited by the loop delay T

[Direct RF feedback](#page-7-0) [One turn delay feedback](#page-10-0)

Direct RF feedback (2/2)

• Plots with loop gain $= 1.3 \times G_{\text{max}}AR$ (flat response) and $T=440$ ns (PEP2 delay value)

- Maximum impedance decreased by a factor of 12.8
- 1 Mode is damped by a factor of 20
- Side effect: other modes growth rates are increased!
- More impedance reduction is needed

[Direct RF feedback](#page-7-0) [One turn delay feedback](#page-10-0)

Delay influence

Olivier BOURRION [LLRF for superB](#page-0-0) 10 / 30

Gre

[Direct RF feedback](#page-7-0) [One turn delay feedback](#page-10-0)

Comb filter feedback principle

- Overcome loop delay limitation
- Correction applied with one turn delay
- Minimize impedance at certain frequencies

• Attenuation needed at synchrotron sidebands \rightarrow dual peaked comb $\text{filter } H_{\textit{comb}}(jw) = \frac{G(1 - e^{-jwT_{\textit{rev}}})}{1 - 2K\cos(2\pi w) e^{-jwT_{\textit{rev}}-1}}$ $1 - 2{\cal K} \cos(2\pi\nu_s) e^{-j\omega T_{\sf rev}} + {\cal K}^2 e^{-j2\omega T_{\sf rev}}$

- Response is modified by the complement to reach one turn delay $H(jw) = H_{comb}(jw) \times e^{-jw(T_{rev} - T_g})$
- \bullet Out of klystron bandwidth, large dephasing \rightarrow loop instability
- Precompensation of the dephasing \rightarrow phase equalizer

[Direct RF feedback](#page-7-0) [One turn delay feedback](#page-10-0)

Comb filter feedback limitations

- Gain margin of 10 dB for loop stability (when $\phi = \pi$) $G_{\text{max}} \leq \frac{1 + 2K \cos(2\pi\nu_s) + K^2}{6}$ 6
- The closest K come to the unity, higher the gain, and narrower the bandwidth
- Max gain on comb loop is function of K
	- \bullet with K=63/64 G=0.655
	- with $K=127/128$ G=0.660
- PEP2 practical value was 0.2? Something to understand here
- Reminder: longitudinal radiation damping rate: 0.0492 ms^{-1}

[Direct RF feedback](#page-7-0) [One turn delay feedback](#page-10-0)

Simulations

 $K=63/64$

 $K = 127/128$ 33 ms⁻¹ \rightarrow 0.05 ms⁻¹

[Loop details](#page-15-0) [Hardware plateform](#page-20-0) [A few technical details](#page-22-0)

Table of Contents

LLRF motivation reminder

- **[Feedback techniques](#page-6-0)**
	- [Direct RF feedback](#page-7-0)
	- [One turn delay feedback](#page-10-0)

³ [Loop implementation](#page-13-0)

- **•** [Loop details](#page-15-0)
- **[Hardware plateform](#page-20-0)**
- [A few technical details](#page-22-0)

[Conclusions and questions](#page-27-0)

[Loop details](#page-15-0) [Hardware plateform](#page-20-0) [A few technical details](#page-22-0)

LLRF feedback overview

[Loop details](#page-15-0) [Hardware plateform](#page-20-0) [A few technical details](#page-22-0)

Cavity tuning

Tuner loop

- Minimizing of the phasing between cavity probe signal and cavity forward voltage
- Setpoint: load offset angle

Angle offset loop

PEP2 implementation arguments. Since all cavities have the same voltage applied, it may be necessary to:

- **•** decrease the gap voltage by having non zero angle. Lowers voltage on fragile cavity
- **•** compensate eventual misphasing between beam and generator current (relative beam phase due to geometry, waveguide length, ...)

[Loop details](#page-15-0) [Hardware plateform](#page-20-0) [A few technical details](#page-22-0)

Gap feedforward $(1/2)$

Problem

- Gap in the ring, is like an amplitude modulation of the beam current
- Current generator with feedback loop is there to compensate beam current effect on the cavity
- Empty bunch \rightarrow cavity voltage is not degraded by beam current, power not extracted by beam, unnecessary power used
- Need a way to avoid unnecessary modulation of the klystron

[Loop details](#page-15-0) [Hardware plateform](#page-20-0) [A few technical details](#page-22-0)

Gap feedforward (2/2)

Solution

- **1** Detect periodic gap transients by sampling cavity sum signal over one turn
- ² Adaptative filtering is done by combining previous sampling and station I&Q reference in order to minimize the gap transient effect
- **3** Correction is applied one turn later

Longitudinal feedback input

- **1** In order to provide more power for kicking lower order mode
- Cosine and sine of LFB kick is applied to Q & I outputs of the model respectively

[Loop details](#page-15-0) [Hardware plateform](#page-20-0) [A few technical details](#page-22-0)

Gap voltage loop

Gap voltage has to be maintained constant

- Direct RF loop works well to damp transient but the loop gain is small
- Workaround: use a slow loop that will modify setpoints (station I&Q reference)
- Minimize error at fundamental frequency between gap voltage and forward voltage with higher gain

[Loop details](#page-15-0) [Hardware plateform](#page-20-0) [A few technical details](#page-22-0)

Klystron loops

- Anti saturation loop
	- tend to maintain a constant drive power by changing HVPS
	- $\bullet \rightarrow$ Keep Klystron out of saturation
- Klystron gain loop
	- Direct RF and comb loop must see a constant klystron gain
	- But previous loop plays with HVPS in order to keep constant drive power
	- This loop hides gain changes due to HVPS changes
- Klystron ripple (or phase) loop
	- Changes in HVPS induces phase shift in the klystron
	- Slow changes due to anti saturation loop could be hidden by a slow loop
	- However HVPS usually display ripples \rightarrow fast computation needed

[Loop details](#page-15-0) [Hardware plateform](#page-20-0) [A few technical details](#page-22-0)

All digital solution

- **•** Digital Down Conversion
- Group delay is critical
- Data in one \bullet board
- **•** Computing power
- **A** Memories for fault recording and excitation

Monitoring DSP, build fast amplitude and phase monitoring signals • Interlock interfaces (arcing???) $Green₀$ aboratoire de Physique accratoire de rhysique.
Adatomique et de Cosmolo

[Loop details](#page-15-0) [Hardware plateform](#page-20-0) [A few technical details](#page-22-0)

FPGA content - focus on latency critical path

Serv Group delay sensitive One turn delay for computation Eventual DSP interfaces

- The sharper the CIC filter, the larger the group delay
- PID used as lead compensator, negative group delay!
- \bullet PEP2 RFP module had 86 ns of I/O delay, BW=3 MHz (Teytelman)
- Total duration $17/19 + 12$ due to ADC/DAC is 29/31 clock cycles
- Worst case: at 250 MHz \rightarrow 31 \times 4 ns = 124 ns! \blacktriangleright [back to delay influence](#page-9-0)

[Loop details](#page-15-0) [Hardware plateform](#page-20-0) [A few technical details](#page-22-0)

Digital Down Conversion (DDC) (1/2)

Principle

- Bring bandwidth of interest to baseband by multiplying a signal at Intermediate Frequency by a sine and cos at the same IF frequency
- **a** Benefits:
	- No dissymmetry in I&Q pathes (path length, encoding, ...)
	- No susceptibility to DC offsets
- Focus on latency critical path

[Loop details](#page-15-0) [Hardware plateform](#page-20-0) [A few technical details](#page-22-0)

Digital Down Conversion (2/2)

Simplification possible by using $Fs = 4 \times IF$ in the limited latency path.

- \bullet Easier to implement, doesn't need real multipliers and sine/cos table (values 0,1,-1,0)
- Input should be clean or steeply bandpass filtered \rightarrow at the cost of group delay!!
- Mixer quality (IF harmonics!) \rightarrow existing chips have attenuation of first harmonics <-65 dB

[Loop details](#page-15-0) [Hardware plateform](#page-20-0) [A few technical details](#page-22-0)

CIC design

- Very simple to implement in FPGA
- Only additions/substractions
- Following slides will present two sets of parameters $(D=1, R=4,$ $M=2$ or $M=3$).
- Interesting to note filter selectivity vs group delay.

[Loop details](#page-15-0) [Hardware plateform](#page-20-0) [A few technical details](#page-22-0)

CIC design

[Loop details](#page-15-0) [Hardware plateform](#page-20-0) [A few technical details](#page-22-0)

CIC design

Table of Contents

LLRF motivation reminder

- **[Feedback techniques](#page-6-0)**
	- [Direct RF feedback](#page-7-0)
	- [One turn delay feedback](#page-10-0)

[Loop implementation](#page-13-0)

- **•** [Loop details](#page-15-0)
- **[Hardware plateform](#page-20-0)**
- [A few technical details](#page-22-0)

Conclusion

- \bullet By simulation, the highest growth rate should be 0.05 ms⁻¹, in real life should be a little bit higher
- All feedbacks can be implemented in a digital fashion (FPGA or software for slow loop) \rightarrow Flexibility and maintenability
- Determine necessary signal range for an optimal feedback (filtering vs group delay)
- Any comments or questions?

Open questions

- How to test an electronic prototype?
	- Possible to build a test setup with klystron, RF source, cavity, ???
	- **Have access to a similar installation?**
- Samples of very technical questions:
	- Tuner, HVPS, interlock interfaces?
	- Amplifier drive level? Need output attenuator (fix or programmable?)
	- Klystron recommended drive power
	- Klystron model for lead compensator
	- Arc interlock module ?
	- ...
- **·** Interlocutors are needed

