Study of potential of SuperB experiment to discover lepton flavour violation with the decays $\tau \to \mu \mu \mu$

Samuel Coquereau¹, Adrian Bevan²

¹Université Paris Sud XI

²Queen Mary, University of London

XIV SuperB General Meeting, 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The analysis

The background

Fit the data

(日) (문) (문) (문) (문)

Event Preselection

I use different cuts created by Adrian:

- BGFMultiHadron Filter
- L3OutDch or L3OutEmc triggers
- Total momentum: p < 10 GeV
- for each tracks:
 - Polar Angle: $0.41 < \theta < 2.46$ rad
 - Transverse momentum: $p_T > 0.1 \text{ GeV}$
- Total charge for the tracks equal zero
- Recontructed 1-3 Topology
- Mass of the reconstructed particle: $1.70 < \tau Mass < 1.85$

Image: A math a math

The 6 variables:

 $\blacktriangleright \Delta E = E_{rec} - E_{beam}$

$$\blacktriangleright \Delta M_{ec} = \sqrt{E_{rec}^2 - p_{rec}^2} - m_{\tau}$$

- M_{2trk}: signal hemisphere two track invariant mass.
- M_{1prg}: 1 prong hemisphere invariant mass.
- ▶ p_1^{cms} : 1 prong hemisphere momentum.
- Δp_T: missing transverse momentum.

< 口 > < 同

Samuel Coquereau

Université Paris Sud XI

э

The 6 variables:

- ► $-0.025 < \Delta M_{ec} < 0.025 \text{ GeV}/c^2$
- $-0.2 < \Delta E < 0.1 \text{ GeV}$
- ▶ $0.1 < M_{1 prg} < 2.5 \text{ GeV}/c^2$
- ▶ p₁^{cms} < 4.8 GeV/c</p>
- $\Delta p_T > 0.2 \text{ GeV/c}$
- $\blacktriangleright \ M_{2\textit{trk}} > 0.2 \ GeV/c^2$

Samuel Coquereau

Université Paris Sud XI

Dalitz plot

Samuel Coquereau

Université Paris Sud XI

3

2

Study of potential of SuperB experiment to discover lepton flavour violation with the decays $au o \mu\mu\mu$

Particle Identification

I use the performance of Muon BDT Selectors found in:

 C. O. Vuosalo, A. V. Telnov, K. T. Flood *Muon Identification Using Decision Trees. BABAR* Analysis Document #1853, Version 3, March 18, 2010.

And I obtained a efficiency of 10,60 \pm 0.013 % for the BABAR's configuration and 12,94 \pm 0.013 % with the SuperB's configuration.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

I use FastSim (version V0.2.4) to create the file of events.

	number of events	configuration of SVT	configuration of DCH	efficiency for the Data (in%)
Super <i>B</i>	500K			12.94 ± 0.013
	100K	baseline	baseline	12.92 ± 0.028
	50K			12.90 ± 0.04
	50K	baseline	longbwdfwd	12.58 ± 0.04
			longbwd	13.09 ± 0.04
			longfwd	12.60 ± 0.04
			shortfwd	12.81 ± 0.04
	50K	long barrel	baseline	13.29 ± 0.04
			longbwdfwd	13.01 ± 0.04
			longbwd	13.24 ± 0.04
			longfwd	12.97 ± 0.04
			shortfwd	12.69 ± 0.04
			baseline	12.93 ± 0.04
	50K	lampshade	longbwdfwd	13.12 ± 0.04
			longbwd	13.19 ± 0.04
			longfwd	13.15 ± 0.04
			shortfwd	12.91 ± 0.04

Samuel Coquereau

∙ ৰ≣ ▶ ≣ ৩৭.ে Université Paris Sud XI

<ロ> <問> < 回> < 回> < 回>

Study of potential of SuperB experiment to discover lepton flavour violation with the decays $au o \mu\mu\mu$

The background

I study the decay $\tau \rightarrow \pi \pi \pi$ like background.

I obtained only 2 events form a 2 million events file. Corresponding to the efficiency of reconstruction: ε_{rec} .

Finally I compute the $N_{expect}(\tau \rightarrow \pi \pi \pi)$ define like:

$$\begin{split} & \textit{N}_{expect}(\tau \rightarrow \pi \pi \pi) = \\ & 2 \times \textit{N}_{\tau^+ \tau^-} \times \varepsilon_{\textit{MID}}{}^3 \times \varepsilon_{\textit{rec}} \times \mathcal{B}(\tau \rightarrow \pi \pi \pi) \\ & \textit{N}_{expect}(\tau \rightarrow \pi \pi \pi) = 1.63 \text{ events} \end{split}$$

where $\varepsilon_{\it MID}$ is the efficiency for fake rate selector for a muon.

Université Paris Sud XI

Samuel Coquereau

Samuel Coquereau

Université Paris Sud XI

Study of potential of SuperB experiment to discover lepton flavour violation with the decays $au o \mu\mu\mu$

I use the software AFit (using version 5.26 of ROOT).

I compute the upper limits at 90% of confidence with $N_{expect}^{sign} = 3.62$ and $N_{expect}^{back} = 1.63$ and I obtained:

 $N_{90}^{UL} = 11.89$ for the signal and $N_{90}^{UL} = 6.23$ for the background.

Corresponding to $B_{90}^{UL} = 6.56 \times 10^{-10}$ for the signal.

Finally I compute the upper limit in assuming that I have only the signal, I obtain: $N_{90}^{UL} = 6.99$

<ロ> (四) (四) (日) (日) (日)

Samuel Coquereau

Université Paris Sud XI

Conclusion

We can see a great difference between upper limit with the signal and background ($N_{90}^{UL} = 11.89$) and with only the signal ($N_{90}^{UL} = 6.99$).

Thus this decay is very sensitive to background and so this decay needs more study for the different backgrounds for a $75ab^{-1}$ data sample.

< □ > < A > >

∃ >