

S. BettariniUniversita' di Pisa & INFN

on behalf of the SuperB SVT Group

XIV SuperB General Meeting @ INFN-LNF – Plenary session 1st Oct. 2010

Outline

- SVT: towards TDR
- Progress in R&D activities reported on the SVT parallel \bullet sections:
	- Pixel Layer0 read-out arch. (F.M.Giorgi) Simulation BKG update (R.Cenci) First Results from n-irr. Maps (S.B.)SVT#1
	-
	- Mechanics Layer0 support/cooling & B.P. (F.Bosi)
	- Progress in UK Activities on pixels (F.Wilson)
	- Activities in Trieste (L.Vitale) SVT1

SVT#2

- Review talk on mimosa-MAPS by M. Winter
- R&D on DNW MAPS (V.Re)SVT#3
- Aluminum bus & HDI (M.Citterio)

•**Conclusions**

SVT enters into the TDR phase

Layer0 Strategy

G.Rizzo

- • Striplets baseline option:
	- – Better physics performance (lower material ~0.5% vs 1% hybrid pixel, MAPS or thin hybrid pixel in between but not yet mature!)
- • Upgrade to pixel (Hybrid or CMOS MAPS), more robust against background, foreseen for a second generation of Layer0• SVT Mechanics will be

designed to allow a quick access/removal of Layer0

Layer 1-5

•Double sided strip detectors modules (up to 37 cm long)

Describe the upgrade path for the Layer0: Status of the R&D on pixel (hybrid, CMOS MAPS, 3D pixels)

Figure 5: Longitudinal section of the SVT

Pixels Readout Core Updates

• NEW CAPABILITY

 • Under development a triggered architecture with no extra memory required on chip. (to be studied the trade off between trigger latency and increasing pixels

occupancy).**PIXE** READ OUT**MATRIX** EXT. TRIGGER

•IMPROVEMENTS

- Improved algorithms on data concentrators (shorter BC
- A more chaotic time sorting).
Code optimization for clock s
- Code optimization for clock speed and synthesis time.

Pixels readout simulation environment:Integration of physical cluster distribution

• CLUSTER SPREAD DISTRIBUTION (Z-Phi) NOW FROM PHYSICS SIMULATIONS Columns along Phi direction \rightarrow compression factor ~ 10%
(Columns along beam direction (7) \rightarrow compression factor

Next 3D Submissions:

- • **ApselVI** Tezz. Char.
	- 2 Tiers (MAP Sensor & Readout)
	- MATRIX **128x96** (2 sub-m. 48x128)
	- SQUARE R.O. core \sim 48 48 48

- •2 Tiers (Digital & Analog) + bumb bonded High Res. sensor
- MATRIX 128x32 (2 sub-m. 16x128)

¹²⁸ ¹²⁸

Update on SVT Background simulation with BrunoFull simulation: Svt electronics

- \bullet Drawing by F. Bosi, realistic HDI for L0 in GDML description, no need to resize container volume
- \bullet Full simulation: hits collected also on HDI's for outer layer and dummy volumes on matching cards location
- \bullet More detailed description, like pin-wheeled L0 modules, will be added soon

R.Cenci

Radiation dose on Svt electronics

- Integrated Dose (1 nominal year)
- Pairs (40k evts) and RadBhabha (10k evts) bkgs, B field ON
- Average dose consistent with previous test
- Touschek still missing
- Phi asymmetries?

Pairs

First results on MAPS neutron irradiation

- The lifetime $($ \rightarrow diffusion length) of minority carriers is reduced by radiation-induced defects. Carriers are trapped by extra recombination centers placed in the • defects. Carriers are trapped by extra recombination centers placed in the substrate before reaching the collecting electrode
- •3 irradiation steps (so far): 2×10^{11} , 5×10^{11} , 1×10^{12} n/cm2
- • Our Deep-Nwell MAPS are expected to:
	- suffer a loss in the signal
	- withstand an increase of the dark current (safe up to ~pA, 100 nA/cm2 $@$ V=300 mV)
	- No change in noise & gain (electronics rad.hard)

- Two electrode geometries implemented in the chip apsel3T1:
	- · satellite N-wells (matrix M1)
	- \cdot T sensor (matrix M2)
- The CR-RC shaper: Pulse (t) ~ t exp(-t / τ_{peak}) with τ_{peak} = 400 ns

• Available the 9 (analog) shaper-outputs of M1/2

Charge Collection

LASER $(\lambda=1060 \text{ nm})$ SCAN

Charge collected by the central pixel varying the position (step=5 um)
of the laser spot (σ~20 um)

10

-20 dinate Im

Charge collected normalized to the maximum charge seen by the central pixel among the (step0 and 3 irr. steps) vs fluence **Chip A3T1_51**

The reduction of the collected charge is larger for M2 (60 %) than for M1 (80 %). This effect may be due to the electrode geometry.

Collected charge [electrons] **Collected charge [electrons]**

The pulse of the scintillator opens a 500 ns-wide window and if the central pixel has a signal greater than 4σ the trigger fires: waveform records from 1.1 us before to 4 us after the scintillator (i.e. the arrival of the electron).

The values of the analog signals are taken as the maxima at $\mathsf{T}_{\mathsf{peak}}$ = 400 ns.

Results from β spectra

12Next irr. step: $+(5 \times 10^{12} \text{ n/cm}^2)$

Layer0 support & SVT Mechanics

Design of Layer 0 modules (striplets and pixel) & beam pipe well advancedF.Bosi

Necessary thermal-structural simulation to verify LO module

Output₁₀

mechanical stability

Carbon Fiber Pultrusion

The reduction of Be beam pipe length is possible to match the request of 240 mm

Need adding work and effort to design quick demounting in the SuperBexperiments

UK Activities

A. Bevan, M. Stanitzki, <u>F. Wilson</u>, S Coquereau,
T. Mistry, E. Cannaway, Plus working groups from SPiDer Collaboration

J. Mistry, F. Gannaway

and ATLAS upgrades

 3.5 **C** Variant

- Silicon $\overline{}$
	- **D** TPAC/Fortis/Cherwell Chips

Irradiation campain (X and Test-Beam) in progress to asses the Radiation hardness of the 3 chips.Results expected at the next coll. meeting

Chip Cherwell:• INMAPS• HiRes.

DECT

GEANT simulation of INMAPS/dx 2.159
0.2061 1,672 0.315 \blacksquare dE/dx 300 320um SI thickness 20μm SI thickness 200 pion Dip: random Dip: random \Box Comparison 20 μ m v 320 μ m electron a digitisation 150 a electron v pi 20um Si has 80% worse dE/dx resolution compared to 320um Identify momentum threshold that achieves 99% pion acceptance electron rejection ratio v momentum **20** µ**^m Si: momentum Cut-off 80 MeV/c**ili Milli Milli Marsu **with 5-bits in the dE/dx ADC**

 $\tau \rightarrow \mu \mu \mu$ Lampshade v. Long-barrel **a** Multiple scattering **FastSim** simulation

<u>վա սկսմնեսա արևանկուսն</u>

0.12 0.14
Momentum (GeV/c)

16

Efficiency: No degradation due to high dip tracks seeing extra material in Long Barrel model

π acceptancì 20um SI thicknes **Digitisation: 5-bit** Dipe random

0.08

Support Structures

a Improving initial ideas

Construction of $1st$ prototype

- 1 ply Carbon Fibre (CFRP) weave + 1 ply
corrugated + epoxy glue \Box
- Roughly 0.8% radiation length \Box
- Thickness 5.2 mm, length 490mm, width 50mm \Box

Proposed Staggered-lampshade

Future Plans

• Characterize chip performance

- **Q** Radiation hardness
- **D** Test beam and X-rays
- a Readout, noise etc...

Continue to develop carbon-fibre support ideas

- n Improve flatness
- n Continue to reduce material
- n Introduce cooling pipes/CFRP
- $E = FEA$ simulation
- **Q** Test thermal conductivity
- Move to more physics-based studies using FastSim.
- $\mathbf{\tilde{1}}$

Group is involved in strip(let) detectors DAQ, ROC &dE/dx, irradiations studies

News since Elba meeting:

- New standalone FSSR2 DAQ is working (for lab use, replaces Pomone)
- Telescope spares construction ongoing.
- •Ongoing discussions on FSSR2 alternatives.
- Starting studies (particle ID with SVT dE/dx)

L.Vitale

New DAQ chain for FSSR2

- \bullet New DAQ developed based on V1795 CAEN board hosting 2 FPGAs, intermediate custom board, 2 (3+3)-FSSR2 hybrids, with a (reduced version) of SLIM5 FW.
- Chips are programmed and data is read through VME-USB bridge and a Labview based acquisition program.
	- Write and read back all registers
	- Correct initializations procedures
	- Able to acquire data
	- $-$ and to perform calibrations

9/26/Not all functionalities still available location and the set of •Some limitations due to small RAM (extend!)

REVIEW TALK

SuperB factory Workshop - Frascati, Septembre 2010

Highly Pixelated Transparent Devices for Future Vertex Detectors

Marc Winter (IPHC-Strasbourg)

(on behalf of the MIMOSA, PLUME, Hadron Physics 2 & AIDA collaborations) > more information on IPHC Web site: http://www.iphc.cnrs.fr/-CMOS-ILC-.html

CONTENTS

- **CMOS pixel sensors developed by IPHC-IRFU:** achievements & current applications
- **On-going R&D:** directions, goals, timelines, ... \bullet

Synergies with SuperB vertex detector issues

Summary - Conclusions

The R&D on DNW MAPS

V.Re

2D MAPS and 3D pixels are the two most advanced options for a Layer0 upgrade:

•CMOS MAPS option:

 –Sensor & readout in 50 ^µm thick chip! –Extensive R&D (SLIM5-INFN Collaboration) on

•Deep N-well devices 50x50µm² with in-pixel
sparsification.

•Fast readout architecture implemented –CMOS MAPS (4k pixels) successfully tested with beams.

•Thin pixels with 3D Vertical
Integration: **reduction of material**
and improved performance

 –Two options are being pursued (VIPIX –INFN Collab.)

> •DNW MAPS with 2 tiers•Hybrid Pixel: FE chip with 2 tiers + high
resistivity sensor

The second 3D-IC run: VIPIX plans and designs(Tezzaron/Chartered process)

New VIPIX designs will cover an area of about 150 mm^2 of 3D stacked chips (300 mm^2 in terms of planar silicon). Submission deadline will be 1Q2011, to allow enough time for testing devices from the first run.

The following devices will be included by VIPIX in the second run, targeting SuperB SVT specifications:

- "test beam grade" MAPS: 100×128 , 50 um pitch (~32 mm²
estive example with high nate aponaified readout anghitecture active area) with high rate sparsified readout architecture
- a 3D readout chip for high resistivity pixel sensors (similar architecture) : 128x32, 50 um pitch (~10.3 mm $^{\rm 2}$ active area)

High resistivity pixels

- \Box Pixel sensors on high resistivity substrate (compared to MAPS) give much better radiation hardness, signal-to-noise ratio,…
- \square Sensors are fabricated by FBK-IRST, following the specifications of the interconnection process. of the interconnection process
- \Box A prototype pixel sensor matrix is ready and characterized N-on-N: P-spray isolation on n-side, p implant on the back sideWafer thickness: 200 µm (FZ, HR Si); 50x50 ^µm pitch.

Two alternatives for the interconnection process:

- \Box Bump bonding with the IZM Berlin process \rightarrow First test of the process with 2D 130 nm chip prototypes under way
- \Box Vertical integration with T-Micro/Zycube (Japan): might offer
lower cost and more flexibility, with respect to Zintronix lower cost and more flexibility with respect to Ziptronix

Why a 65 nm APSEL ?

- The demand for higher in-pixel functionalities along with the reduction of pixel cell size drives the interest of the designers community towards sub-100 nm CMOS processes in the design of mixed signal front-end electronics
- The properties of Low-Power 65 nm CMOS:
	- Noise parameters appear stable wrt previous CMOS generations
	- The comparison with data from previous CMOS generations confirms the high degree of tolerance to ionizing radiation typical of sub-100 nm technologies
	- Submitted a prototype chip with mixed-signal readout circuits in a 65 nm CMOS process by IBM (10LPE/10RFE) \rightarrow APSEL65

Update on pixel bus Number of layers: 8
Total thickness = 156 um

Analysis of the stack-up (prototype)

Lessons learned:

- •Layer thickness must be carefully measured during stack-up
- •Good practice: measure thickness at each step in production
- •The kapton layer is always the same
- •Aluminum signal lines slightly thicker than expected
- •Trace widht ~ 75 um, some "undercut" due to etching. Trace width could be not uniform \rightarrow impedance variation
Not vet understood the extra crosstalk •Not yet understood the extra crosstalk

$LATO A 43$

The new bus for a 3-chip assembly

Production schedule:

- Simulation of new layout completed
- by mid October
- Bonding layout should be reviewed
- BUS delivered after 6 months

HDI, transition card development

- k. **Transfer data from layer0 front-end electronics to DAQ**
	- to collect data and program FSSR2 (baseline) or MAPS to collect data and program FSSR2 (baseline) or MAPS (upgrade)
	- P. ■ to store data for 20 μs by means of buffers (hypothesis)
	- P. to increase robustness using ECC codes and radiation hardening by design ASICs
	- to transfer data at high frequencies (up to 5 Gbps)
	- to re-use similar approach for others layers (with less contraints)

HDI prototype

- Developed a first prototype using a Virtex 5 FPGA, containing:
	- –Differential receivers
	- –De-serializer
	- –Data organizer
- Extensive tests demonstrate that prototype works as expectedNEXT STEPS:
- Study data transmission using the prototype BUS for signal integrity measurements and simulation comparison
- • Rad hard Serializer (LOC) 16:1, 5 GBps
	- –Dallas chip expected in the coming weeks
	- –LOC will be used instead of FPGA rocketIO

Conclusions

- The technologically mature SVT design as baseline for the TDR: L0 striplet $+$ L1 \rightarrow 5 Strip module
- A lot of activities are ongoing on all the items:
	- – R&D on pixel solutions more robust against background and useful in a Layer0 of a 2nd generation
	- \rightarrow RKG cimulation \rightarrow r.o. architecture i BKG simulation \rightarrow r.o. architecture improvements
Test on Bad, Hardness
	- Test on Rad. Hardness
	- Mechanics & integration
	- $-$ R&D on nival in vartical R&D on pixel in vertical and 65 nm technologies
	- –Pixel bus and HDI
- The SVT group is heavily working toward the TDR