

B→K*vv HAD tag vs bwd EMC and fwd PID

Elisa Manoni INFN Sez. Perugia

DGWG session, Frascati general Meeting, October 29, 2010

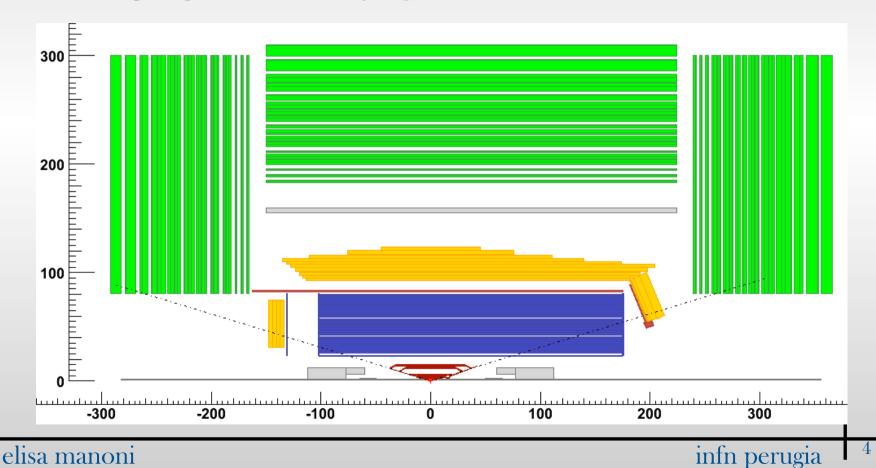
elisa manoni infn perugia | 1

SuperB

Outline

- * samples and DG configuration from September production
- * impact of fwd PID in Breco and Breco+Bsig selection efficiencies
- * impact of bwd EMC used as a veto
- * validation and other to-do-lits items

PacHadRecoilUser code


* SemiExclusive reconstruction of Hadronic B modes

- * limit the number of reconstructed Breco channels
 - reconstruct only modes with purity >50%
 - generate ad-hoc BB cocktail sample instead of generic
- * Available Bsig modes
 - K*νν
 - Kvv , $K_s(\pi\pi)vv$
 - $\tau \nu$, with $\tau \rightarrow e \nu \nu$, $\mu \nu \nu$, $\pi \nu$, $\rho(\pi \pi^0) \nu$, $a_1(\rho \pi) \nu$

Detector geometries

- * DG_4: SVT_L0 + fwd TOF+ bwd EMC
 - offline can study: impact of fwd PID, impact of bwd EMC
- * DG_4a: as DG_4 but TOF made if Air (0-thickness TOF)
 - comparing with DG_4, study impact of TOF material in front of the EMC

Sample used

* 2010_February production, FastSim release V0.2.5, revs 307 and 311

Sample	geometry	Bkg conditions	$N_{\text{events}}^{\text{analyzed}}(10^6)$
$B^0 \to K^{*0} \nu \bar{\nu}$ vs generic B^0	DG 4	nopairs	3,00
$B^+ \to K^{*+} \nu \bar{\nu}$ vs generic B^+	DG 4	nopairs	3,00
B^0 hadronic cocktail vs generic B^0	DG 4	nopairs	(*)313,92
B^+ hadronic cocktail vs generic B^+	DG 4	nopairs	(*)378,08

* additive samples (generics), DG (DG_4a), and bkg conditions available (some ready some coming soon) and to be analyzed

* DG_BaBar ntuples analyzed to validate production (see talk @yesterday FastSim session)

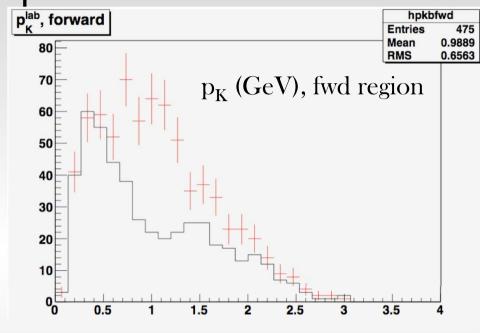
(*) 50% of the requested samples

infn perugia

Analysis strategy

- Baseline analysis
 - DG_4 with Fwd TOF switched on and Bwd EMC switched off
 - Kaons form Bsig and Breco: likelihood based selectors TightLHKaonTOFSelection
- * impact of Fwd TOF:
 - DG_4 with Fwd TOF switched off and Bwd EMC switched off
 - Kaons form Bsig and Breco: likelihood based selectors TightLHKaonSelection
- * impact of Bwd EMC:
 - DG_4 with Fwd TOF switched on and Bwd EMC switched on
 - cut on Eextra deposited in bwd EMC (+ usual cut on Eextra measured from Barrel+Fwd)

$$\frac{\delta\varepsilon}{\varepsilon} = \frac{\varepsilon_{\text{xxx,on}} - \varepsilon_{\text{xxx,off}}}{\varepsilon_{\text{xxx,on}}}$$



Impact of Fwd PID

Kaon momentum distribution

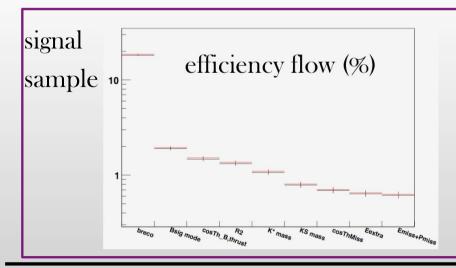

B⁰→K^{*0}vv signal sample

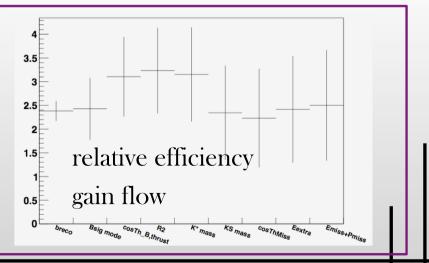
black: DCH only

red: DCH+TOF

All Kaons in the event (from Bsig, Btag, and Dtag)

$B^+ \rightarrow K^{*+}(K_S\pi^+)\nu\nu$: Cut flow efficiency


 $\delta \varepsilon / \varepsilon$ _{Breco,sel} = (2.38 ± 0.20) %

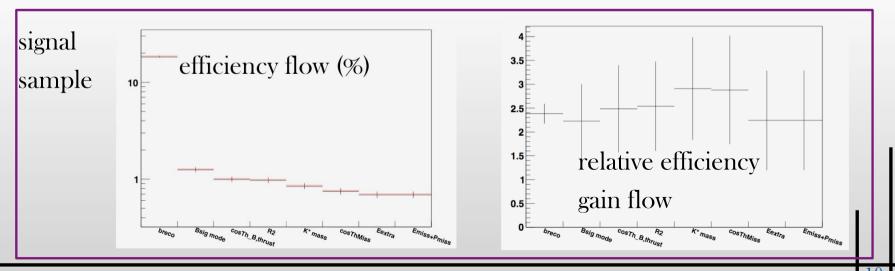

	$B^+ \to K^{*+}(K_S \pi^+) \nu \bar{\nu}$		
	DCH	DCH+TOF	
B_{reco} sel	5779 ± 76	5920 ± 77	
B_{sig} mode	603 ± 25	618 ± 25	
$cos\theta_{B,thrust}$	468 ± 22	483 ± 22	
R_2	419 ± 20	433 ± 21	
m_{K^*}	338 ± 18	349 ± 19	
m_{K_S}	250 ± 16	256 ± 16	
$cos\theta^*_{miss}$	219 ± 15	224 ± 15	
E_{extra}^{BrrFwd}	202 ± 14	207 ± 14	
$E_{miss} + cp_{miss}$	195 ± 14	200 ± 14	

$$\delta \varepsilon/\varepsilon = (2.5 \pm 1.1)\%$$

$(\delta \varepsilon/\varepsilon)_{\mathrm{Breco,sel}} =$	(2.430 ± 0.008))%
---	---------------------	----

	$B^{+}B^{-}$		
	DCH	DCH+TOF	
B_{reco} sel	3990270 ± 1998	4089600 ± 2022	
B_{sig} mode	6588 ± 81	6765 ± 82	
$cos\theta_{B,thrust}$	5418 ± 74	5564 ± 75	
R_2	4609 ± 68	4744 ± 69	
m_{K^*}	2830 ± 53	2908 ± 54	
m_{K_S}	1530 ± 39	1563 ± 39	
$cos\theta^*_{miss}$	1156 ± 34	1177 ± 34	
E_{extra}^{BrrFwd}	74 ± 9	73 ± 8	
$E_{miss} + cp_{miss}$	50 ± 7	51 ± 7	

$B^+ \rightarrow K^{*+}(K^+\pi^0)\nu\nu$: Cut flow efficiency


 $(\delta \varepsilon/\varepsilon)_{\rm Breco,sel} = (2.38 \pm 0.20)\%$

	$B^+ \to K^{*+}(K^+\pi^0)\nu\bar{\nu}$		
	DCH	DCH+TOF	
B_{reco} sel	5779 ± 76	5920 ± 77	
B_{sig} mode	395 ± 20	404 ± 20	
$cos\theta_{B,thrust}$	314 ± 18	322 ± 18	
R_2	307 ± 17	315 ± 18	
m_{K^*}	267 ± 16	275 ± 16	
$cos\theta^*_{miss}$	236 ± 15	243 ± 16	
E_{extra}^{BrrFwd}	218 ± 15	223 ± 15	
$E_{miss} + cp_{miss}$	218 ± 14	223 ± 15	

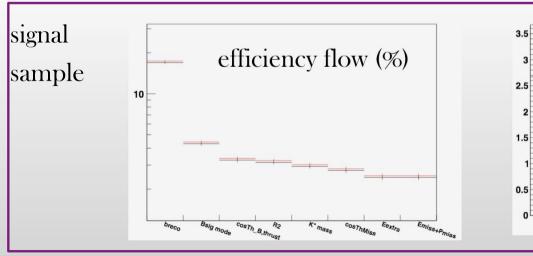
$$\delta \varepsilon/\varepsilon = (2.2 \pm 1.0)\%$$

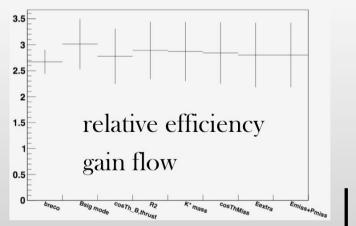
$(\delta \varepsilon/\varepsilon)_{\mathrm{Breco,sel}} =$	(2.430 ± 0.008)	%
---	---------------------	---

	B^+B^-		
	DCH	DCH+TOF	
B_{reco} sel	3990270 ± 1998	4089600 ± 2022	
B_{sig} mode	480 ± 22	488 ± 22	
$cos\theta_{B,thrust}$	380 ± 19	387 ± 19	
R_2	370 ± 19	377 ± 19	
m_{K^*}	283 ± 17	289 ± 17	
$cos\theta^*_{miss}$	172 ± 13	175 ± 13	
E_{extra}^{BrrFwd}	36 ± 6	38 ± 6	
$E_{miss} + cp_{miss}$	36 ± 6	38 ± 6	

$B^0 \rightarrow K^{*0}(K^+\pi^-)\nu\nu$: Cut flow efficiency

4.


 $\delta \varepsilon / \varepsilon$ _{Breco,sel} = (2.67 ± 0.22) %


	$B^0 o K^{*0} u ar{ u}$		
	DCH	DCH+TOF	
B_{reco} sel	5071 ± 71	5210 ± 72	
B_{sig} mode	1288 ± 36	1328 ± 36	
$cos\theta_{B,thrust}$	980 ± 31	1008 ± 32	
R_2	941 ± 31	969 ± 31	
m_{K^*}	880 ± 30	906 ± 30	
$cos\theta^*_{miss}$	821 ± 29	845 ± 29	
E_{extra}^{BrrFwd}	729 ± 27	750 ± 27	
$E_{miss} + cp_{miss}$	729 ± 27	750 ± 27	

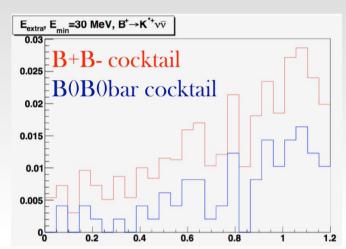
$$\delta \varepsilon/\varepsilon = (2.8 \pm 0.6)\%$$

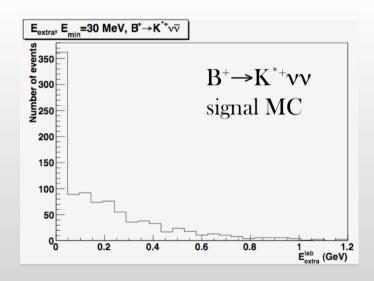
$(\delta \varepsilon/\varepsilon)_{\mathrm{Breco,sel}} =$	$(2.401 \pm 0.010)\%$
---	-----------------------

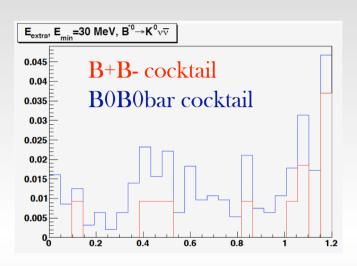
	B^0B^0		
	DCH	DCH+TOF	
B_{reco} sel	2499820 ± 1581	2560670 ± 1600	
B_{sig} mode	2312 ± 48	2358 ± 49	
$cos\theta_{B,thrust}$	1840 ± 42	1871 ± 43	
R_2	1704 ± 41	1733 ± 42	
m_{K^*}	1410 ± 37	1434 ± 38	
$cos\theta^*_{miss}$	1052 ± 32	1068 ± 33	
E_{extra}^{BrrFwd}	108 ± 10	108 ± 10	
$E_{miss} + cp_{miss}$	105 ± 10	105 ± 10	

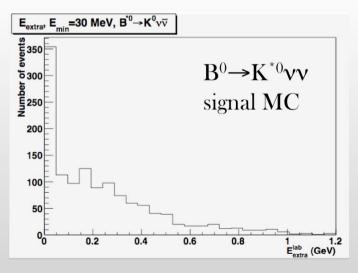
Impact of Bwd EMC

infn perugia

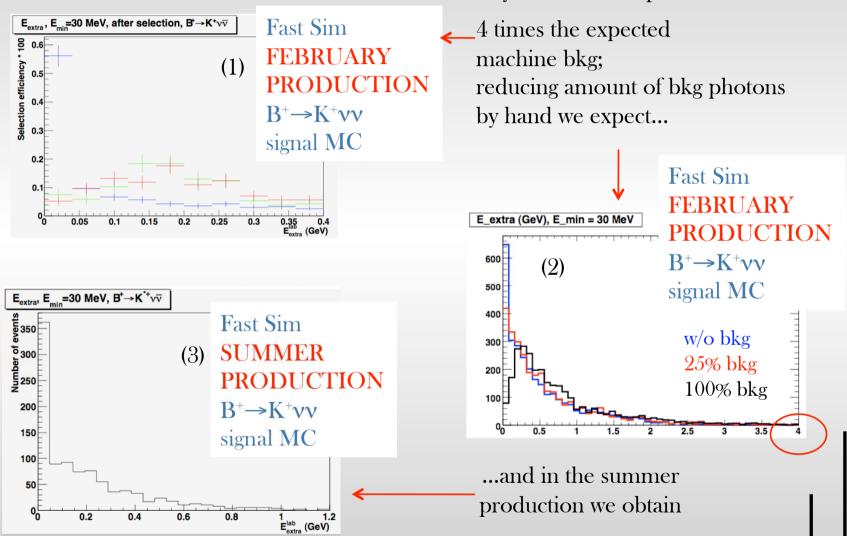

12




Eextra_brrfwd before Bsig selection (I)

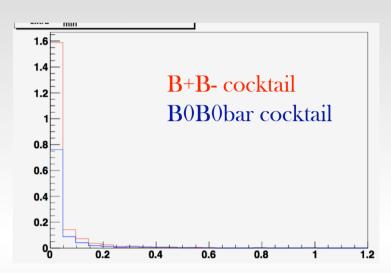

* $B^+ \rightarrow K^{*+} \nu \nu$ selection

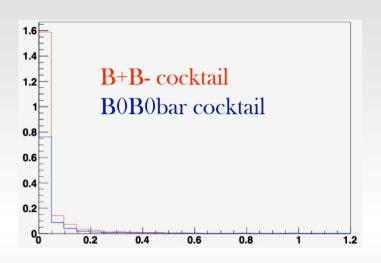
* B⁰→K^{*0}vv selection

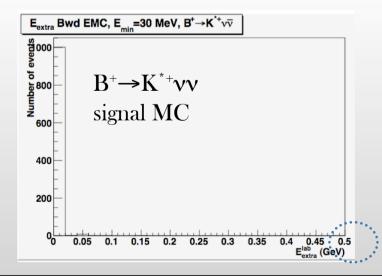


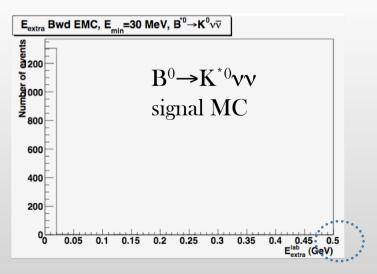
SuperB

Eextra_brrfwd before Bsig selection (II)

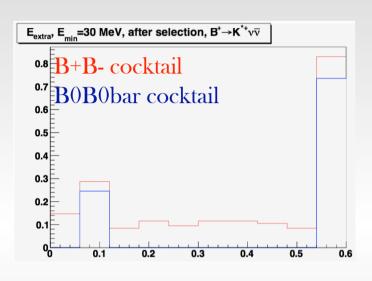

* evolution of Eextra distribution from February to Summer production

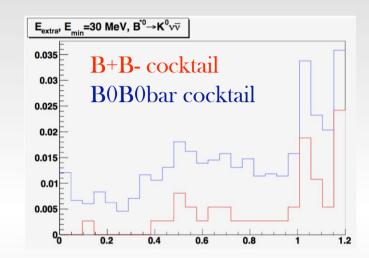


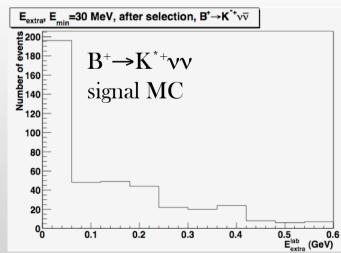

Eextra_bwd before the selection

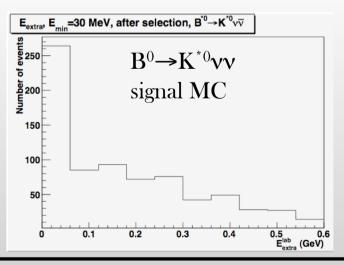

* B⁺→K^{*+}vv selection

* $B^0 \rightarrow K^{*0} \nu \nu$ selection

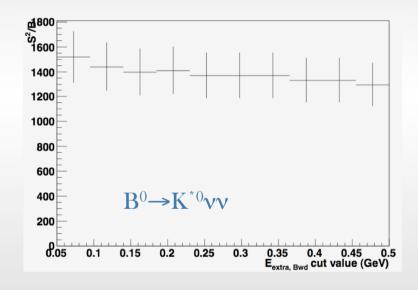


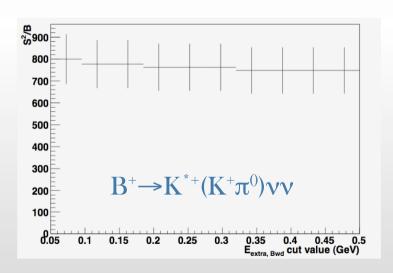



Eextra_brrfwd after selection


* $B^+ \rightarrow K^{*+} \nu \nu$ selection

* $B^0 \rightarrow K^{*0} \nu \nu$ selection


16



Eextra_bwdEMC cut: optimization

- * Strategy:
 - scan the region Eextra_Bwd \in [0.05,0.5] GeV and compute FOM = S/sqrt(B)
 - optimal cut \leftrightarrow maximum FOM

Eextra bwdEMC cut: results

EextraBwd < 0.05 GeV:

$B^0 o K^{*0} uar u$					
Sample	$N_{ m sel}$	$arepsilon_{ ext{tot}}$	$N_{ m sel,Bwd}$	$arepsilon_{ m tot,Bwd}$	$\delta \varepsilon / \varepsilon$
$B^0 \to K^{*0} \nu \bar{\nu}$	750	$(25.0 \pm 0.9) \times 10^{-5}$	742	$(24.7 \pm 0.5) \times 10^{-5}$	1.2%
B^0 had cocktail	105	$(33 \pm 3) \times 10^{-8}$	92	$(29 \pm 3) \times 10^{-8}$	12%
S/\sqrt{B}		73		77	
		$B^+ \to K^{*+}(K)$	$^+\pi^0)\nu\bar{\nu}$		
Sample	$N_{ m sel}$	$arepsilon_{ ext{tot}}$	$N_{ m sel,Bwd}$	$arepsilon_{ ext{tot,Bwd}}$	$\delta \varepsilon / \varepsilon$
$B^+ \to K^{*+} \nu \bar{\nu}$	223	$(7.0 \pm 0.5) \times 10^{-5}$	217	$(6.8 \pm 0.5) \times 10^{-5}$	2.8%
B^+ had cocktail	38	$(10.0 \pm 1.6) \times 10^{-8}$	31	$(8.2 \pm 1.5) \times 10^{-8}$	18%
S/\sqrt{B}		36		39	

$$\delta\left(\frac{S}{\sqrt{(B)}}\right) = \frac{\left(\frac{S}{\sqrt{(B)}}\right)_{bwd} - \left(\frac{S}{\sqrt{(B)}}\right)_{nobwd}}{\left(\frac{S}{\sqrt{(B)}}\right)_{nobwd}} = \underbrace{\begin{array}{c} (5.4 \pm 1.9)\% \\ B^0 \to K^{*0}\nu\bar{\nu} \end{array}}_{(7.2 \pm 4.1)\%}$$

$$B^+ \to K^{*+}(K^+\pi^0)\nu\bar{\nu}$$

$$\begin{array}{c}
(3.4 \pm 1.9) \\
B^0 \rightarrow K^{*0} \nu \overline{\nu} \\
\hline
(7.2 \pm 4.1) \%
\end{array}$$

$$B^+ \to K^{*+} (K^+ \pi^0) \nu \bar{\nu}$$

Conclusion

- * Preliminary studies on September_2010 Production for DGWG purposes
 - also some results on validation have been discussed
- * FWD PID: gain on Breco and Bsig efficency ~ 2-3%
 - thigh likelihood based selector applied
 - need to repeat the study with full available sample and bkg configuration
 - some issues to be understood

* BWD EMC

elisa manoni

- preliminary studies indicates a 5-7% enhancement in the FOM when applying the Eextra_bwd cut

infn perugia 19

To do list

Work to be done before considering the results as "final"

- complete validation with additional DG_BaBar events, understand if "FastSim-effects" may affect detector performances estimation
- study systematic effects due to the usage of Hadronic Breco cocktail in place of BB generic
- repeat the analysis with the full sample and the full bkg simulation
- tune analysis cuts: variable distributions may have changed wrt BaBar due different machine condition
- study impact of fwd TOF material on the Fwd EMC performances (DG_4a)

Many Thanks to Luca, Armando and all the DCG

elisa manoni infn perugia | 120

Back-up slides