SuperB factory Workshop — Frascati, Septembre 2010

Highly Pixelated Transparent Devices for Future Vertex Detectors

Marc Winter (IPHC-Strasbourg)

(on behalf of the MIMOSA, PLUME, Hadron Physics 2 & AIDA collaborations) > more information on IPHC Web site: http://www.iphc.cnrs.fr/-CMOS-ILC-.html

CONTENTS

- CMOS pixel sensors developed by IPHC-IRFU : achievements & current applications
- On-going R&D: directions, goals, timelines, ...
- Synergies with SuperB vertex detector issues
- Summary Conclusions

CMOS Pixel Sensors: State of the Art

- Prominent features of CMOS pixel sensors:
 - * high granularity \Rightarrow excellent (micronic) spatial resolution
 - st very thin (signal generated in 10-20 μm thin epitaxial layer)
 - * signal processing μ -circuits integrated on sensor substrate
- Sensor organisation:
 - * signal sensing and analog processing in pixel array
 - * mixed and Digital circuitry integrated in chip periphery
 - * read-out in rolling shutter mode
 - (pixels grouped in columns read out in //)
- Main characteristics of MIMOSA sensor equipping EUDET BT:
 - $\ast~$ 0.35 μm process with high-res. epitaxy (coll. with IRFU/Saclay)
 - * column // architecture with in-pixel amplification and end-of-col. discrimination, followed by \emptyset
 - * active area: 1152 columns of 576 pixels (21.2 \times 10.6 mm²)
 - st pitch: 18.4 $\mu m
 ightarrow$ 0.7 million pixels $\Rightarrow \ \sigma_{sp} \lesssim$ 4 μm
 - * T $_{r.o.} \lesssim$ 100 μs (~10⁴ frames/s) \Rightarrow suited to >10⁶ part./cm²/s

High-Resistivity CMOS Pixel Sensors

- M.i.p. detection with LOW & HIGH resistivity CMOS sensors combined in a Beam Telescope (BT)
- 4 EUDET ref. sensors & 2 sensors under test Beam π. 120 GeV June 2010 at CERN-SPS (\sim 120 GeV pions) * sensor variants : standard epitaxy (14 μm thick) & high-resistivity epitaxy (10 & 15 μm thick) 50 μm thin DUT (Device Under Test) Reference planes **Preliminary conclusions:** Mi26 HR-15 and HR-10 Efficiency, Fake rate and Resolution Mi26 HR-15 Efficiency, Fake rate and Resolution for a chip irradiated with a 1.10^{13} N_{eg} dose at T_{op} ~ 0° C det. eff. \sim 100 % (SNR \sim 40) for very low fake rate: * Efficiency (%) 86 001 Efficiency (%) 86 001 \triangleright plateau until fake rate of few 10⁻⁶ Average fake hit rate/pixel/even single point resolution \lesssim 4 μm * Resoluti det.eff. still \sim 100 % after exposure 104 to fluence of $1 \cdot 10^{13} n_{eq}/cm^2$ 96 96 \cdot 10 13 n $_{eq}$ /cm $_{
 m 3}^2$ **10⁻⁵** 10⁻⁵ 94 94 **Excellent detection performances 10⁻⁶ 10⁻⁶** with high-resistivity epitaxial layer 92 92 despite moderate resistivity (400 $\Omega \cdot cm$) 10⁻⁷ 10⁻⁷ 90 8 9 10 11 12 6 8 9 1Ŏ 7 and poor depletion voltage (< 1 V) Discri. Threshold (mV) Discri. Threshold (mV)

Tolerance to \gtrsim O(10 14) n_{eq} /cm 2 seems within reach (study under way)

-3-

Direct Applications of MIMOSA-26

- Beam telescope of the FP6 project EUDET
 - * 2 arms of 3 planes (plus 1-2 high resolution planes)
 - * M-26 thinned to 50 μm
 - $*~\sigma_{extrapol.} \sim$ 1-2 μm even with e $^-$ (3 GeV, DESY)
 - * frame read-out frequency $O(10^4)$ Hz
 - * running since '07 (demonstrator: analog outputs) at CERN-SPS & DESY (numerous users)

• Spin-offs :

- * Several BT copies : foreseen for detector R&D
- * **BT** for channelling studies, mass spectroscopy, etc.
- * **CBM (FAIR) :** MVD demonstrator (2-sided layers) for CBM-MVD (HP-2 project)
- * FIRST (GSI) : VD for hadrontherapy σ measurements

Application of CMOS sensors to the STAR-PIXEL

ho
ho
ho 1st vertex detector equipped with CMOS pixel sensors ightarrow 1st data taking in 2012/13

Next Extensions of MIMOSA-26

- Vertex Detector of the CBM expt / FAIR
 - * 2 double-sided stations operated in vacuum
 - * 0.3–0.5 % X₀ per station
 - $*~\lesssim$ 5 μm single pt resolution
 - $*~\lesssim$ 10 μs r.o. time
 - * several MRad & > $10^{13} n_{eq}$ /cm²/s
 - * data taking \gtrsim 2016 (SIS-100) ... 2020 (SIS-300)
- ILD Vertex Detector (option) :
 - * geometry : 3 double-sided or 5 single-sided layers
 - $\,\,st\,\,\sim$ 0.2 % X_{0} total material budget per layer
 - * $\sigma_{sp}\lesssim$ 3 μm
 - st r.o. time \lesssim 25–100 μs (500 GeV)
- Other applications under consideration :

ALICE upgrades : ITS, FOCAL; VD/eIC, VD/CLIC, (HL-)LHC upgrades, etc.

Sensor Integration in Ultra Light Devices

- Double-sided ladders with time stamping :
 - * expected added value of 2-sided ladders:

compactness, alignment, pointing accuracy (shallow angle), etc.

- * studied by PLUME coll. (Oxford, Bristol, DESY, IPHC) & AIDA (EU)
 - \rightarrow Pixelated Ladder using Ultra-light Material Embedding
- * square pixels for single point resolution on beam side
- * elongated pixels for 4-5 times shorter r.o. time on other side
- * correlate hits generated by traversing particles
- st expected total material budget \sim 0.2 0.3 % X_0
- Unsupported & flexible (?) ladders (Hadron Physics 2 / FP-7)
 - * 30 μm thin CMOS sensors mounted on thin cable and embedded in thin polyimide \rightarrow suited to beam pipe ?
 - * expected total material budget \lesssim 0.15 % X₀
- STAR-PIXEL ladder:
 - st total material budget \sim 0.37 % X $_0$
 - \Rightarrow may become \lesssim 0.3 % X $_0$ with AI traces

Investigating Large Area Sensors

- Prototype multireticule sensor for large area stations:
 - * 3072imes3072 pixels (16 μm pitch)
 - \Rightarrow 5×5 cm² sensitive area
 - * requires combining several reticules
 - \Rightarrow stitching process \Rightarrow establish proof of principle
 - st double-sided read-out of 1536 rows in 250–300 μs
 - \Rightarrow Large Area Telescope for AIDA project
 - (EU-FP7 approved recently)
 - * windowing of $\lesssim 1 \times 5 \text{ cm}^2$ (collim. beam) $\Rightarrow \lesssim 50$ –60 μs r.o. time
 - * 50-100 μm pitch variants under discussion
- Submission expected end fo 2011 or early 2012:
 - * bonus: avoid paving "large" areas with reticule size sensors
 - \Rightarrow dead zones, material, connectics/complexity
 - * synergy with tracker layers and forward disk projects on collider & fixed target experiments
 - * 6 sensors will compose a beam telescope at CERN (AIDA project deliverable)
 - ▷ few ns time stamping resolution associated to each hit by TLU (scintillator)

R&D Road Map for Mid-Term : 2D Sensors

• 2011 :

- st 2-sided read-out in < 15 μs for 200 columns of 200 pixels
- * 50 μm pitch viability (det. efficiency, σ_{sp})
- st exploration of \leq 0.18 μm CMOS technologies
- 2012 :
 - st validation of 35 μm pitch pixel array connected to column level ADC
 - * validation of stitching \Rightarrow large surface sensors
 - * validation of 2-sided ladder concept with 0.4% X $_0$
 - * validation of unsupported 0.15% X_0 ladder concept
 - * exploration of \leq 0.18 μm CMOS technologies
- 2013 :
 - * switch to 0.18 μm technology \Rightarrow expect \sim 10 μs r.o. time, O(10) MRad tolerance
 - * validation of 2-sided ladder concept with 0.3% X₀
 - st exploration of < 0.18 μm CMOS technologies

3DIT to achieve Ultimate CMOS Sensor Performances

- 3D Integration Techno. allow integrating high density signal processing μ circuits inside small pixels
- 3DIT are expected to be particularly beneficial for CMOS sensors :
 - * combine different fabrication processes * alleviate constraints on transistor type inside pixel
- Split signal collection & processing functionnalities using optimal technology in each tier :
 - * Tier-1 : epitaxy (depleted or not), deep N-well ?
 - * Tier-2 : analog, low I_{leak} , process (nb of ML)
 - * Tier-3 (& -4) : digital VDSM process (nb of ML),
 - \rightarrowtail fast laser (VOCSEL) driver, etc.

• The path to nominal exploitation of CMOS pixel potential :

fully depleted 10-20 μm thick epitaxy $\Rightarrow \lesssim$ 5 ns collection time, rad. hardness > Hybrid Pix. Sensors ???

- * FEE with < 10 ns time resolution \rightarrow solution for CLIC & HL-LHC specifications ???
- **Devt of** CAIRN \equiv CMOS Active pixel sensors with vertically Integrated Read-out and Networking functionnalities

 \hookrightarrow 1st set of 4 chips submitted to foundry in Spring 2009 (within 3DIC)

3D 4 Pixel Layout

3D Sensor: Towards a High Resistivity Sensing Tier

• Combine 0.13 μm 2-tier process with 0.35 μm high-resistivity EPI process

* Tier-1 :

- \diamond fully depleted \Rightarrow fast charge collection (\sim 5 ns) \rightarrow radiation tolerant
- ◊ for small pitch, charge contained in only few pixels
- ◊ sufficient S/N ratio defined by the 1st stage
- ◇ "charge amplification" (> factor 10) by capacitive coupling of the 1st to the 2nd stage

* Tier-2 :

- ◇ single stage, high gain, folded cascode based charge amplifier, with current source in the feedback loop
 - \Rightarrow shaping time \sim 200 ns for the sake of time resolution
- ♦ small offset, continous discriminator

* Tier-3 :

- $\diamond~$ matrix of 256 \times 256 pixels \Rrightarrow 2 μs read-out time
- 1st prototype (with 1-bit ADC) submitted in Spring '09 \rightarrow still expected back ...

Fast 3D Sensor with Reduced Power Consumption

- CMOS sensors with fast pipeline digital r.o. \Rightarrow minimise power consumption :
 - * Subdivide sensitive area in "small" arrays running individually in rolling shutter mode
 - * Adapt the number of raws to required frame r.o. time
 - \Rightarrow few μs r.o. time achievable
 - * Design fitting 20×20 μm^2 :
 - $\diamond~$ Tier-1: sensor & pre-amplifier (G \sim 500 μV /e $^-$)
 - $\diamond~$ Tier-2: 4-bit pixel-level ADC with offset cancellation circuitry (LSB \sim N) $~\lesssim$ 2 μm resolution
 - ◇ Tier-3: fast pipeline read-out with integrated data sparsification

• 1st prototype (with 1-bit ADC) submitted in Spring '09 \rightarrow still expected back ...

R&D Road Map for Long-Term : 3D Sensors

- 2011-2012 :
 - * proof of principle of heterogeneous CMOS sensor concept:

connection of 0.35 μm high-res sensing tier to 0.13 μm 2-tier r.o. chip (within AIDA)

- st exploration of \lesssim 0.1 μm CMOS technologies
- * exploration of connection and thinning techniques
- 2013-2014 :
 - st validation of architecture allowing for \lesssim O(μs) r.o. time
 - * R&D on radiation tolerance
 - st exploration of \lesssim 0.1 μm CMOS technologies
 - * exploration of connection and thinning techniques
- 2015-2016 :
 - * validation of 1st full size thin and fast sensor adapted to experimental specifications (e.g. CBM-MVD)
 - * start designing dedicated sensors exploiting the concept developed

Towards Light Pixelated Systems adapted to a SuperB Factory

- Synergies with SuperB oriented devts : sensors and pixelated systems
- Exploit concept of double-sided ladders to fill space between SVT & beam pipe:
 - * 1 or 2 layers (replacing SVT inner layer) ?
 - * complete with unsupported ladder on beam pipe ? (optimistic !)
- Synergy with the development of 3 generations of sensors :
 - * 1st generation : 2D sensor in 0.35 μm high-res techno. (prototyping completed \lesssim 2013)
 - $\triangleright\,$ MIMOSA-26 like architecture with 50 μm pitch with 10–15 μs r.o. time
 - * 2nd generation : 2D sensor in 0.18 μm triple well, high-res, techno. (prototyping completed \lesssim 2015)
 - \triangleright new architecture expected to allow for a few μs r.o. time and > 10 MRad tolerance
 - * 3rd generation : 3D sensor combing 0.18 μm high-res sensitive tier with \leq 0.13 μm 2-tier r.o. chip (prototyping completed \lesssim 2017)
 - $Descript{interval}$ architecture expected to allow for < 1 μs r.o. time and very high data flow

SUMMARY

- CMOS sensor technology is mature for high performance vertexing but its full potential is still far from being exploited (despite improvement generated by high-res epitaxial layer processes) \Rightarrow explore \leq 0.18 μm , high-res, multi-well manufacturing technologies
- CMOS pixels equipping a double-sided ladder seem to provide an attractive perspective for the SuperB vertex detector innermost layer(s?)
- R&D at IPHC addresses 3 sensor generations, featuring increasing performance levels
 ⇒ may be worth assessing the merit of each of them for the SuperB program
- 3D chips are the most promising, but there is a long way to go
 ⇒ keep pushing 2D sensor approach to its best
- R&D at IPHC may bring valuable contributions to the Layer-0 project
 - \Rightarrow exploit the synergy with INFN

Reminder: Main Features of CMOS Sensors

- P-type low-resistivity Si hosting n-type "charge collectors"
 - signal created in epitaxial layer (low doping):

Q \sim 80 e-h / $\mu m \mapsto$ signal \lesssim 1000 e $^-$

- charge sensing through n-well/p-epi junction
- excess carriers propagate (thermally) to diode with help of reflection on boundaries with p-well and substrate (high doping)
- Prominent advantages of CMOS sensors:
 - \diamond granularity: pixels of \lesssim 10imes10 μm^2 \Rightarrow high spatial resolution
 - $\diamond\,$ low mat. budget: sensitive volume \sim 10 20 μm \Rightarrow total thickness \lesssim 50 μm
 - \diamond signal processing μ circuits integrated in the sensors \Rightarrow compacity, high data throughput, flexibility, etc.
 - \diamond other attractive aspects: cost, multi-project run frequency, T_{room} operation, etc.

The Trend for Ultra-Light Pixelated Devices

- Trend of subatomic physics experiments for highly granular and thin pixel devices
- Central motivation :
 - * high performance reconstruction of (displaced) charm vertices
 - * high performance multi-jet final state flavour tagging ($t\overline{t}$, $t\overline{t}H$, AH, ...)
- Flagship of this trend : International Linear Collider (ILC) → Letters of Intent delivered in 2009
 → Detector Baseline Document (~ TDR) to be delivered by 2012
 - * also: Heavy Ion experiments, CLIC, LHC upgrades, ..., hadrontherapy, ...
 - \hookrightarrow Figure of merit : $\sigma_{\mathbf{ip}} = \mathbf{a} \oplus \mathbf{b}/\mathbf{p} \cdot \sin^{3/2} \theta$

* a governs high momentum

Accelerator	a (μm)	${f b}$ ($\mu m \cdot GeV$)
LEP	25	70
SLD	8	33
LHC	12	70
RHIC-II	12	19
ILC	< 5	< 10

Compliance of the second secon

* **b** governs low momentum (\sim 30 % particles < 1 GeV/c)

Back-Up: MIMOSA Sensors Performances

ho
ho
ho Impact of 1·10¹³n_{eq}/cm² on detection performances at T_{op} ~ 0°C

• Preliminary conclusions:

st det. eff. \sim 100 % for very low fake rate: HR-15 \triangleright plateau until fake rate of few 10⁻⁶

- * single point resolution \lesssim 4 μm
- * det.eff. of HR-15 still \sim 100 % after exposure to $1 \cdot 10^{13} n_{eq}$ /cm²

\Rightarrow Striking evidence for performance improvment with HR epitaxy (in particular 15 μm thick)

Back-Up : Application of CMOS Sensors to CBM Experiment

- Cold Baryonic Matter (CBM) experiment at FAIR:
 - * Micro-Vertex Detector (MVD) made of 2 of 3 stations located behind fixed target
 - * double-sided stations equipped with CMOS pixel sensors)
 - * operation a negative temperature in vacuum
 - * each station accounts for \lesssim 0.5 % X $_0$
 - * sensor architecture close to ILC version
- Most demanding requirements :
 - st ultimately (\sim 2020): 3D sensor \lesssim 10 μs , > 10 14 n $_{eq}$ /cm 2 , \gtrsim 30 MRad
 - * intermediate steps: 2D sensors \lesssim 30-40 μs , > 10 13 n $_{eq}$ /cm 2 , \gtrsim 3 MRad
 - * 1st sensor for SIS-100 (data taking \sim 2016)

Back-Up: VTX Oriented Infrastructures in AIDA

- AIDA \equiv EU FP-7 Integrated Infrastructure project : approved \rightarrow starts Feb. 2011
- On-beam (CERN-SPS) test infrastructure:
 - * Large Area beam Telescope (LAT) \rightarrowtail 5×5 cm² stitched sensors
 - * Alignment Investigation Devices (AID):
 - ♦ box hosting pairs of ladders (e.g. PLUME) and unsupported pixelated systems (SERWIETE)
 - ◊ box front panel contains removable target

- Work program topics $\triangleright \triangleright \triangleright$ relevant for numerous high resolution devices:
 - * alignment capabilities: dedicated equipment and particle tracks
 - * vertex reconstruction accuracy
 - * track reconstruction with different devices (high spatial resolution combined with fast detectors)

Back-Up : Long-Term CMOS R&D with High-Resistivity Substrate

LePIX: monolithic detectors in advanced CMOS

- Submission for fabrication just finalized
 - Several issues: ESD, special layers and mask generation, guard rings
 - Still need to discuss some outstanding fabrication issues with IBM
- 7 chips submitted :
 - 4 test matrices
 - 1 diode for radiation tolerance
 - 1 breakdown test structure
 - 1 transistor test: already submitted once in test submission
- Will require very significant testing effort for which we need to prepare (measurement setup, test cards...)

